粉煤灰制备硅铁合金并富集氧化铝 的试验研究

夏文杰1,2,3,4,金永丽1,2,3,4*,张梧祯1,张凯悦1,2,3,4

(1. 内蒙古科技大学稀土产业学院, 内蒙古 包头 014010; 2. 内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室, 内蒙古 包头 014010; 3. 内蒙古自治区碳中和协同创新中心, 内蒙古 包头 014010; 4. 白云鄂博共伴生矿废弃物资源综合利用国家地方联合工程研究中心, 内蒙古 包头 014010)

摘 要:在实验室条件下对粉煤灰进行了碳热还原制备硅铁合金并富集氧化铝试验, 回收粉煤灰中的 Si、Fe、Al 等元素。研究发现, 反应过程中, 当温度升高, 生成的硅铁合金中硅的含量随之升高。当配碳量增加, 粉煤灰中莫来石相的 Al-O-Si 键更容易分解, 还原成氧化铝和二氧化硅。碳热还原时加入 Fe₂O₃ 不仅能够降低还原温度, 而且莫来石相中的二氧化硅更易被还原成硅, 并与金属铁结合生成硅铁合金, 这为后续硅铁合金和氧化铝的分离创造了条件。该工艺将粉煤灰、Fe₂O₃ 和煤粉以 5:4:2 的质量比进行配料, 使用电阻炉在 1600 °C 的条件下进行焙烧, 保温 2 h 后随炉冷却, 通过破碎、筛分、研磨、磁选处理还原后的物料, 得到硅铁合金初级产品及氧化铝含量较高的尾渣, 硅的回收率达到 76.44%, 铝的实际回收率达到 93.96%。

关键词:硅铁合金;氧化铝;粉煤灰;碳热还原;磁选

中图分类号:TF645, X757 文献标志码:A

DOI: 10.7513/j.issn.1004-7638.2024.05.014

文章编号: 1004-7638(2024)05-0108-08 开放科学 (资源服务) 标识码 (OSID):

··听语音 聊科研 与作者互动

Carbon thermal reduction is used to enrich alumina from fly ash and prepare ferrosilicon alloy

Xia Wenjie^{1, 2, 3, 4}, Jin Yongli^{1, 2, 3, 4*}, Zhang Wuzhen¹, Zhang Kaiyue^{1, 2, 3, 4}

(1. College of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China; 2. Inner Mongolia Key Laboratory of Integrated Exploitation of Bayan-Obo Multi-Metal Resources, Baotou 014010, Inner Mongolia, China; 3. Inner Mongolia Autonomous Region Carbon Neutrality Collaborative Innovation Center, Baotou 014010, Inner Mongolia, China; 4. National and Local Joint Engineering Research Center of Integrated Exploitation of Bayan-Obo Associated Mineral Waste Resources, Baotou 014010, Inner Mongolia, China)

Abstract: The comprehensive utilization of fly ash is a solid waste industry with high technical content and application potential, which integrates environmental protection and resource recycling. Ferrosilicon alloy was prepared by carbothermal reduction of fly ash under laboratory conditions and alumina was enriched to recover Si, Fe, Al and other elements in fly ash. It was found that the content of silicon in the ferrosilicon alloy increased with the increase of temperature during the reaction. When the carbon

收稿日期:2024-06-29

基金项目:国家自然科学基金项目(52064044);内蒙古自然科学基金项目(2023MS05033);白云鄂博伴生矿战略资源非常规富集技术研发平台内蒙古自治区直属高校基本科研业务费项目(2023RCTD002)。

作者简介:夏文杰, 2000 年出生, 男, 安徽宣城人, 硕士研究生, 主要从事固废资源综合利用和低碳冶金过程优化, E-mail: 1317322210@qq.com; ^{*}通讯作者: 金永丽, 1973 年出生, 女, 博士, 教授, 主要从事固废资源综合利用和低碳冶金过程优化, E-mail: jinyongli731112@126.com。

content increases, the Al-O-Si bond of the mullite phase in the fly ash is more easily decomposed and reduced to alumina and silica. The carbothermal reduction is carried out under the condition of adding Fe₂O₃. After adding Fe₂O₃, not only the temperature of carbothermal reduction can be reduced, but also the silicon dioxide in mullite phase is easier to be reduced to silicon, and combined with metal iron to form ferrosilicon alloy, which creates conditions for the subsequent separation of ferrosilicon alloy and alumina. In this process, fly ash, iron oxide and pulverized coal are mixed at a mass ratio of 5 : 4 : 2, and roasted in a resistance furnace at 1 600 °C. After holding for two hours, they are cooled with the furnace. After crushing, screening, grinding and magnetic separation, the reduced materials are treated to obtain ferrosilicon alloy primary products and tailings with high alumina content. The desilication rate reaches 76.44%, and the recovery rate of aluminum reaches 93.96%.

Key words: ferrosilicon, aluminum oxid, coal fly ash, carbon thermal reduction, magnetic selection

0 引言

粉煤灰综合利用是一个具有高技术含量和应用 潜力的固废产业,集环保和资源再生利用为一体。 内蒙古煤炭资源丰富,是国家重要的能源和现代煤 化工基地。随着国家对大气治理逐步标准化、制度 化,火力发电厂除尘、脱硫、脱硝技术日益成熟,粉 煤灰产量也随之增加[1]。2021年我国粉煤灰综合 利用量达 6.57 亿 t, 2023 年我国粉煤灰综合利用 量将达到 6.96 亿 t^[2]。内蒙古自治区粉煤灰年产生 量 7 000 多万 t, 年利用量 2 700 万 t 左右, 利用率 仅 38%[3]。大量粉煤灰仍堆积于堆场中,其中含有 的汞、砷、钍、铀[4]等重金属和放射性元素会经空气 或地下水进入人体的呼吸道或消化道,造成大气、 水体、土壤污染,甚至危害人体健康[5]。粉煤灰富 含 Al、Si、Fe 等有价金属元素,主要应用于建筑、环 保和农业领域中,但是利用价值低,二氧化硅可用作 制造水泥、混凝土[6],氧化铝具有优异性能和广泛应 用,可在航天、汽车和消费品加工等领域广泛使用[7]。 硅铁是钢铁生产中的脱氧剂、合金元素和钢液净化 剂,可提高钢材的强度、硬度和韧性,Fe与Si元素 结合后生成具有磁性的硅铁合金[8]。如何响应绿色 冶金的政策,提取粉煤灰中的 Al、Si、Fe 等有价元 素,将固废进行全资源化利用,成为目前面临的主要 问题[9]。

目前,国内粉煤灰制备氧化铝的工艺路线主要有酸法和碱法。预脱硅加碱烧结法^[10]和传统的石灰石烧结法^[11]属于碱法,局限性在于能耗高、时间长、碱量大、废渣较多、提取量低。相比碱法,酸法提取粉煤灰中氧化铝后产生的相应酸气能够经吸收后循环使用^[12-13],主要有以"一步酸溶法"为代表的盐酸浸出法与浓硫酸浸出法,酸法的局限性在于

设备材料腐蚀严重,废水、残渣难处理^[14-15]。粉煤灰提取硅的工艺包括碱溶-酸浸法^[16-17]和酸溶-碱浸法^[18-19],碱溶-酸浸法存在工艺流程长、控制要求高、成本相对较高的问题,而酸溶-碱浸法存在设备耐酸性要求高、后续蒸发浓缩和分解能耗大、工艺路线长等问题^[20]。

笔者以低铝高硅粉煤灰为原料,采用碳热还原的方式制备硅铁合金并富集氧化铝,考察配碳比、Fe₂O₃的添加量、反应温度等参数对硅铁合金制备及硅铝分离的影响。与其他提取铝、硅的方法相比工艺流程更加简便,几乎不产生污染物,并能够生成硅铁合金初级产品,且合金相具有磁性,易与氧化铝分离。与其他制备硅铁合金的方法^[21-22]相比,还原后的物料中,硅铁合金以大颗粒沉积出现在底部。

1 试验原料和研究方法

1.1 试验原料

试验使用某电厂粉煤灰作为原料,添加剂为氧化铁,煤粉作为还原剂。粉煤灰主要化学成分如表1所示,SiO₂含量为61.85%,Al₂O₃达到18.35%。所选用煤粉的固定碳含量为84.58%,挥发分为9.81%,灰分5.51%,含S0.40%。所使用的氧化铁为纯度为99%的Fe₂O₃粉末。

表 1 粉煤灰样品的主要化学组成

Table 1 Main chemical composition of fly ash samples %

SiO ₂	Al ₂ O ₃	TFe	CaO	K ₂ O	NaO	MgO	TiO ₂	P	S	MnO
61.85	18.35	4.75	3.37	2.58	1.42	1.60	0.80	0.10	0.34	0.07

1.2 研究方法

首先将粉煤灰、煤粉和 Fe₂O₃ 按一定质量比混合均匀,加入质量分数为 10% 聚乙烯醇液作为粘结剂,用压片机以 10 MPa 的压力压制成圆柱形块。

将物料放入烘干箱以90 ℃ 干燥12 h。将样品装入 石墨坩埚中, 置于电阻炉内, 以 10 ℃/min 的升温速 率升高到目标温度,保温 2 h,随炉冷却,整个加热过 程在通氩气的条件下进行。对焙烧后的物料进行破 碎、筛分、磁选,初步得到硅铁合金初级产品和氧化 铝含量较高的尾渣。通过改变温度、配碳量、Fe₂O₃ 添加量,考察还原后物料中硅铁合金和氧化铝的富 集状况,得到最佳工艺参数。试验条件为:①粉煤灰、 Fe,O,与煤粉的质量比5:4:2,考察温度对提硅富 铝的影响,分别在1400、1500、1600 ℃的条件下, 进行试验。②在 1 600 ℃ 的条件下, 粉煤灰、Fe₂O₃ 与煤粉的质量比分别为 5:4:1,5:4:2,5:4:3, 考察配碳量对提硅富铝的影响。③在 1600 ℃ 的条 件下, 粉煤灰、 Fe_2O_3 ,与煤粉的质量比分别为 5:3:2, 5:4:2,5:5:2,考察 Fe₂O₃添加量对提硅富铝的 影响。

还原后的样品分别使用 X 射线衍射仪(XRD) 分析物相、X 射线荧光分析技术(XRF)对样品的化学成分进行定量, 扫描电镜(SEM)观察硅铁合金的形态和结构并对其进行能谱分析。

2 粉煤灰制备硅铁合金并富集氧化铝的热力学分析

碳热还原二氧化硅反应的吉布斯自由能如图 1 所示, SiC 在大约 1 800 $^{\circ}$ 生成, Si 在大约 1 922 $^{\circ}$ 被还原生成, SiC 和 Si 生成的温度很接近, 但 SiC 在 1 922 $^{\circ}$ 以上才开始分解, 且分解速率极慢。在 有 Fe₂O₃ 添加的情况下, 可显著改变 SiO₂ 碳热还原的热力学行为, 二氧化硅的还原温度下降至 1 400 $^{\circ}$, 说明 Fe₂O₃ 在热力学上对二氧化硅的还原起促进作用。为了提高合金的质量, Fe₂O₃ 的投入量极其重要, 尽可能避免 SiC 的生成。通过熔点仪测得粉煤灰样品的熔点为 1 480 $^{\circ}$, 由于测熔点时样本量较少, 当在大剂量焙烧粉煤灰时, 为了使物料全部融化, 需要的温度会适当提高。

粉煤灰碳热还原制备硅铁合金,生成物中硅铁合金存在的形式不同,所需的反应温度也不同,硅的含量越高所需的反应温度越高。分析可得,反应温度从高到低依次得到的产物为 $FeSi_2$ 、FeSi、 Fe_5Si_3 。当 Fe_2O_3 、二氧化硅与碳的质量比为 5:6:27 时,该过程的反应温度最低,当 Fe_2O_3 与二氧化硅的质量比为 1:2 时,反应温度低于质量比为 1:4 时的反应温度,说明 Fe_2O_3 的增加会适当降低反应开始的温度。

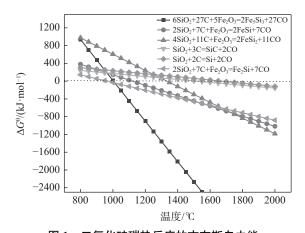


图 1 二氧化硅碳热反应的吉布斯自由能 Fig. 1 Gibbs free energy diagram of carbothermal reaction of silica

莫来石配加 Fe_2O_3 进行碳热还原, 生成不同硅铁合金的吉布斯自由能如图 2 所示。可知, 当生成 $FeSi_2$ 时, 反应所需温度为 1 360 \mathbb{C} , 反应温度最高, 而生成 Fe_3Si 时, 反应温度为 840 \mathbb{C} , 反应温度最低。当 Fe_2O_3 的添加量升高, 反应温度会随之下降。但 加入过量的 Fe_2O_3 时, 生成的硅铁合金以 Fe_3Si 的形式出现, 合金中的硅比例较少, 因此 Fe_2O_3 的加入能够改变莫来石的分解温度, 为了能够将硅元素提取出来, Fe_2O_3 作为添加剂适量加入能够节约成本并且提高效率。

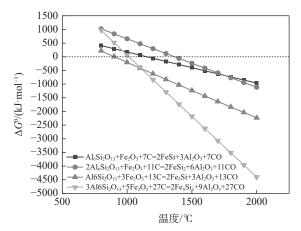


图 2 还原莫来石生成不同硅铁合金的吉布斯自由能 Fig. 2 Gibbs free energy in the reduction of mullite to generate different ferrosilicon alloys

为了获得最佳反应温度和最佳物料配比,使用 Factsage8.2 绘制硅铁二元相图(图 3),根据二元相 图在不同温度下的物相状态以及不同硅铁比生成的 物相,寻找反应最佳温度和最佳硅铁质量比。

当硅铁完全处于液相时,温度为 1500 ℃,以 1500 ℃ 为基准,上下浮动 100 ℃ 进行试验对比。当硅铁合金处于固相时,主要以 FeSi 和 FeSi₂的形

式存在, FeSi₂ 中硅含量高, 为最佳合金相, 通过吉布斯自由能计算, Fe 的含量需要适量, 当硅铁元素质量比为 0.5 时, 硅铁合金中硅的含量高, 与其对应的原料中粉煤灰与 Fe₂O₃ 的质量比为 5:4,因此采用硅铁质量比 0.5 为基准进行试验对比, 由于该相图为硅铁纯物质相图, 对于试验仅供参考。

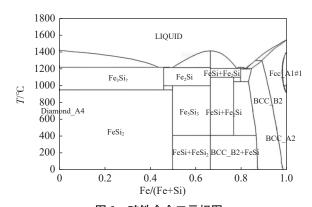


图 3 硅铁合金二元相图 Fig. 3 Binary phase diagram of ferrosilicon

3 结果与讨论

3.1 温度对硅铁合金生成的影响

将粉煤灰、Fe,O,和煤粉以5:4:2的质量比 配置试样, 在 1 400 、1 500 、1 600 ℃ 温度下分别进 行物料焙烧,保温时间 2 h,还原后样品的 XRD 图 谱如图 4 所示。可知在 1 400 ℃ 的条件下,还原后 的物料中仍存在着未被分解的莫来石相,且氧化铝 衍射峰值较低,制备出来的硅铁合金主要以 Fe₃Si 的形式出现, Fe,Si 中硅的占比较低。当温度提高 到 1 500 ℃ 时, 物料中出现硅酸铝的衍射峰, 莫来石 分解的反应式为 Al₆Si₂O₁₃ → Al₂SiO₅ + SiO₂, 且氧 化铝的衍射峰值提高,说明还原后粉煤灰中的莫来 石相分解生成硅酸铝,硅酸铝进一步分解为氧化铝。 硅铁合金以 Fe₃Si, Fe₅Si₃ 两种形式表示, Fe₅Si₃ 衍射 峰的出现,说明进入硅铁合金中的硅含量提高。当 温度达到 1600 ℃ 时, 硅酸铝的衍射峰值下降, 而氧 化铝的峰值提高,硅酸铝高温下分解,反应式为 2 Al₂(SiO₄)₃→3 Al₂O₃+6 SiO₂.且硅铁合金出现 Fe₃Si, Fe,Si,, FeSi 的形式, Fe,Si, Fe,Si, 的衍射峰值下降, 而 FeSi 的峰值升高, FeSi 中硅铁的摩尔比为 1:1, 硅铁合金中的硅含量进一步提高。随温度的升高, 硅铁合金中的硅含量和物料中氧化铝的含量升高。

3.2 配碳量对硅铁合金生成的影响

在 1 600 ℃ 下, 分别使用 5:4:1、5:4:2

和 5:4:3的质量比(粉煤灰:Fe₂O₃:煤粉)制样进行焙烧,保温时间 2h,对还原后的物料进行XRD检测,结果如图 5所示。可知,当质量比为5:4:2时硅铁合金中硅元素含量最高。当以5:4:1的质量比还原时,还原后的物料中仍存在大量未分解的莫来石相,氧化铝的衍射峰值较小。配碳量较少,不足以使莫来石完全分解,无法完全还原出粉煤灰中的氧化铝。当以5:4:3的质量比焙烧时,莫来石相的衍射峰消失,氧化铝的峰值提高,碳化硅的衍射峰值升高。虽然莫来石相分解,但过量的碳与硅结合,还原后物料中的SiC含量较高,并且SiC不易与硅铁合金和尾渣分离。为尽量避免碳化硅的生成,最佳配比为5:4:2。

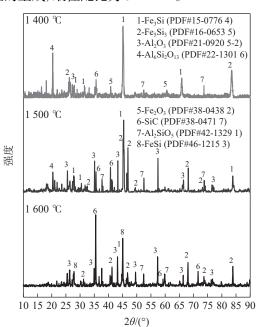


图 4 在 1 400 ~ 1 600 ℃ 下粉煤灰碳热还原后物料的 XRD 图谱

Fig. 4 XRD pattern of fly ash after carbothermal reduction at 1 400-1 600 $^{\circ}\mathrm{C}$

3.3 Fe₂O₃ 添加量对硅铁合金生成的影响

根据图 1 可知, Fe_2O_3 的加入会降低二氧化硅的还原温度,在 1 600 °C 下,分别使用 5:3:2、5:4:2 和 5:5:2 的质量比(粉煤灰: Fe_2O_3 :煤粉)制备试样进行焙烧,保温时间 2 h,对还原后的物料进行 XRD 检测,如图 6 所示。可知当质量比为5:4:2 时硅铁合金中硅元素含量最高。当 Fe_2O_3 的比例较少时,还原后的物料中 SiC 的衍射峰升高,SiC 不容易与尾渣分离, Fe_2O_3 的添加量较少,过量的碳与硅结合,生成碳化硅。当 Fe_2O_3 的比例较高时,还原后的物料中会出现 Fe_3O_4 和 FeO 的峰值,且

硅铁合金主要以 Fe_3Si 的形式出现,还原剂在反应中优先还原 Fe_2O_3 。 Fe_2O_3 含量过多导致还原剂不足,二氧化硅中的 Si 难以还原,莫来石难以分解。 Fe_2O_3 的还原也不能进行到底只能出现中间还原产物 Fe_3O_4 和 FeO,试验成本也会有所提高。所以采用 5:4:2 的质量比有效降低反应熔点,并且降低 SiC 的含量。

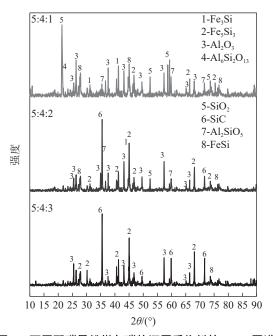


图 5 不同配碳量粉煤灰碳热还原后物料的 XRD 图谱 Fig. 5 XRD patterns of fly ash after carbothermal reduction with different carbon dosages

在 1 600 ℃ 下, 以 5:4:2 的质量比制备试样, 进行碳热还原, 通过扫描电子显微镜对还原后物料

筛分出来的硅铁合金颗粒进行形貌观察,如图 7 所示,并对其中 A、B 两点进行能谱分析。

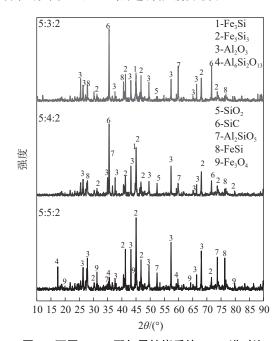
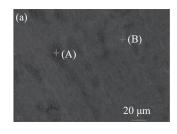
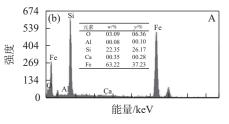




图 6 不同 Fe_2O_3 配加量焙烧后的 XRD 谱对比 Fig. 6 Comparison of XRD spectra after roasting with different additions of Fe_2O_3

对于 A 点根据 C、Fe、Si 元素的原子比或质量比,大致可以推算出该点含有 SiC、硅铁合金。铁元素与硅元素百分比含量 3:1,所以合金中的硅铁相为 Fe₃Si。对于 B 点根据 C、Fe、Si 元素的原子比或质量比,大致可以推算出该点含有少量的 SiC 和硅铁合金。硅铁原子百分比含量接近 3:1,该点存在的硅铁相为 Fe₃Si。

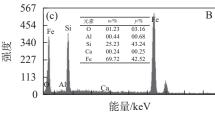


图 7 硅铁合金颗粒的 SEM 形貌及能谱分析 Fig. 7 SEM image and EDS analysis of ferrosilicon alloy particles

3.4 最佳工艺参数下的脱硅率及铝回收率的计算

在 1 600 ℃ 的焙烧温度下,粉煤灰取 30 g,物料质量比为 5:4:2,焙烧后的样品中硅铁合金部分具有磁性,而氧化铝部分无磁性,因此可以采用磁选法进行分离。图 8 为焙烧后的实物,经破碎筛分后,获得 18.84 g 大颗粒的硅铁合金(其 XRD 谱如

图 9 所示), 筛下物通过湿式磁选法, 获得磁性部分 8.25 g, 非磁性部分 8.15 g。根据元素的质量守恒 30 g 粉煤灰理论上得到 26.875 g 的硅铁合金, 实际 获得 27.09 g 硅铁合金。

可见,筛分出来的硅铁合金颗粒中主要为 FeSi 和 Fe,Si,的衍射峰,但同时存在 SiC 的衍射峰,SiC 易与硅铁合金粘连,保留在合金相中。对筛分出来的硅铁合金颗粒研磨后,进行 XRF 定量分析,可知硅铁合金颗粒中硅铁元素含量大于 80%,如表 2 所示。

图 8 1600 $^{\circ}$ 条件下配比 5:4:2 焙烧后实物 Fig. 8 Physical diagram after calcination with a ratio of 5:4:2 at 1600 $^{\circ}$

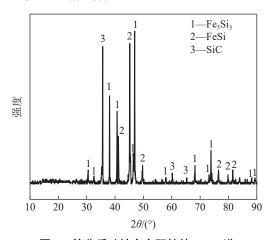


图 9 筛分后硅铁合金颗粒的 XRD 谱 Fig. 9 XRD pattern of ferrosilicon particles after sieving

表 2 硅铁合金颗粒成分

Table 2 Particle composition of ferrosilicon alloy %									
Fe	Si	О	Al	Ca	K	Na	Mg		
63.400	20.910	3.647	0.424	1.342	1.540	0.573	0.637		

硅铁合金颗粒为 18.84 g, 根据表 3 可得, 硅的含量占 20.91%, 铝的含量占 0.424%, 得到硅铁合金颗粒中硅为 3.94 g, 铝为 0.08 g。

表 3 硅铁合金粉末成分

rabi	es co	mpositi	011 01 16	er i osinc	on ano	y powu	er %
Fe	Si	О	Ca	Al	K	Mg	Na
53.53	32.53	4.48	2.18	1.15	1.70	0.81	0.59

通过磁选将具有磁性的硅铁部分选出来,其 XRD 谱如图 10 所示,可见内部包含着部分铝元素。 对磁选后的硅铁合金粉末进行 XRF 分析,如表 3 所 示。经过磁选后的合金粉末中, 硅铁元素含量大于 85%。

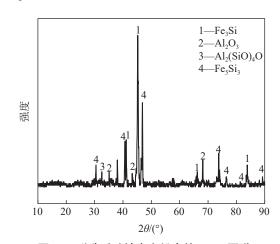


图 10 磁选后硅铁合金粉末的 XRD 图谱 Fig. 10 XRD pattern of ferrosilicon powder after sieving

硅铁合金粉末的质量为 8.25 g, 根据表 3 可得, 其中硅的含量占 32.53%, 铝的含量占 1.15%, 得到 硅铁合金粉末中, 硅为 2.68 g, 铝为 0.09 g。

$$P_{\rm Si} = \frac{m_{\rm figs} + m_{\rm figs}}{m_{\rm Si}} \tag{1}$$

$$P_{\rm Al} = \frac{m_{\rm Al} - m_{\rm \bigcirc MAl} - m_{\rm \bigcirc MAl}}{m_{\rm Al}} \tag{2}$$

原料中的硅元素含量 m_{Si} =8.66 g, 铝元素含量 m_{Al} =2.91 g。通过式(1)计算硅的回收率为 76.44%,通过式(2)计算铝的回收率为 94.16%。

对磁选后非磁性部分进行 XRD 检测,结果如图 11 所示。可知在尾渣中存在氧化铝以及钙长石的衍射峰。对尾渣进行 XRF 检测,测得铝元素含量 35.12%(表 4),说明铝元素大量存在于尾渣当中。

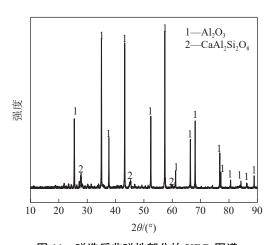


图 11 磁选后非磁性部分的 XRD 图谱 Fig. 11 XRD pattern of the non-magnetic fraction after magnetic separation

%

表 4 非磁性部分成分

Table 4	Composition of non-magnetic fraction	
---------	--------------------------------------	--

Al	О	Si	Ca	K	Mg	Na	其他
35.12	45.85	2.79	4.67	2.69	1.29	1.15	6.44

根据表 4 可得, 铝元素含量够达到 35.12%, 氧化铝品位提升至 66%, 相当于中等品位(B 级)的铝土矿。

$$P_{\mathrm{Al}_{\mathrm{I}}} = \frac{m_{\mathbb{R}}}{m_{\mathbb{R}}} \tag{3}$$

尾渣中铝的质量为 2.739 g, 原料中铝的质量为 2.915 g, 根据式(3)计算可得, 实际上铝的回收率为 93.96%, 与式(2)计算的理论值 94.2% 相比减少了 0.24 个百分点, 其原因是在破碎, 磁选等过程中, 会 出现飞溅等损失。

4 结论

通过粉煤灰碳热还原制备硅铁合金并富集氧化

铝,实现粉煤灰中的硅、铝元素的有效分离和综合利用,提高粉煤灰的高附加值,减少污染。结论如下:

- 1)粉煤灰碳热还原制备硅铁合金,分离粉煤灰中的硅、铝元素,生成硅铁合金初级产品和氧化铝含量较高的尾渣,硅的回收率为76.44%。
- 2)粉煤灰碳热还原并富集氧化铝,破碎磁选后 得到 Al₂O₃ 理论回收率为 94.16%,实际回收率为 93.96%,尾渣中 Al₂O₃ 品位提升至 66%,富集率约为 原料中 Al₂O₃ 含量的 3.6 倍。
- 3)以 Fe_2O_3 为添加剂, 煤粉为还原剂, Fe_2O_3 能够降低莫来石中 Al-O-Si 的分解温度, 使还原反应所需的吉布斯自由能降低。
- 4)还原后的物料中生成硅铁合金大颗粒并沉积 在底部,形成上层渣相下层硅铁的结构。通过磁选, 具有磁性的硅铁合金与含有氧化铝的尾渣分离。

参考文献

- [1] Lu Ying. The comprehensive utilization and development prospects of fly ash[J]. Heilongjiang Science and Technology Information, 2012(11): 38.

 (卢英. 粉煤灰的综合利用与发展前景 [J]. 黑龙江科技信息, 2012(11): 38.)
- [2] Wang Di, Qiao Liang, Gong Hao, *et al.* The current research status of comprehensive utilization of fly ash resources[J]. Modern Mining, 2021, 37(5): 18-20. (王迪, 乔亮, 龚浩, 等. 粉煤灰资源化综合利用研究现状 [J]. 现代矿业, 2021, 37(5): 18-20.)
- [3] Chang Ge, Xing Tai. Fly ash is not garbage, it is a misplaced resource[N]. CPPCC Daily, 2019-11-05(003). (常歌, 邢泰. 粉煤灰不是垃圾, 是放错地方的资源 [N]. 人民政协报, 2019-11-05(003).)
- [4] Bhangare R C, Tiwari M, Ajmal P Y, *et al.* Distribution of natural radioactivity in coal and combustion residues of thermal power plants[J]. J. Radioanal. Nucl. Chem., 2014, 300: 17-22.
- [5] Cui Jiaxin, Wang Lianyong, He Yan, *et al.* Hazards of fly ash and its utilization[J]. Comprehensive Utilization of Resources in China, 2022, 40(3): 118-121. (崔家新, 王连勇, 何艳, 等. 粉煤灰的危害及其利用现状 [J]. 中国资源综合利用, 2022, 40(3): 118-121.)
- [6] Lei Xuefei, Qi Guangxia, Sun Yinglong, *et al.* Removal of uranium and gross radioactivity from coal bottom ash by CaCl₂ roasting followed by HNO₃ leaching[J]. J. Hazard. Mater., 2014, 276: 346-352.
- [7] Somerset V S, Petrik L F, White R A, *et al.* The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites[J]. Talanta., 2004, 64: 109-114.
- [8] Zhang Zhaoyang, Lei Minjun, Huang Kai, *et al.* Research on the preparation of ferrosilicon alloys by fly ash carbon thermal reduction method[J]. Ferroalloys, 2021, 52(5): 21-24. (张照阳, 雷敏军, 黄凯, 等. 粉煤灰碳热还原法制备硅铁合金工艺研究 [J]. 铁合金, 2021, 52(5): 21-24.)
- [9] Chernenkov Y P, Ershov N V, Lukshina V A, *et al.* An X-ray diffraction study of the short-range ordering in the soft-magnetic Fe-Si alloys with induced magnetic anisotropy[J]. Physica B., 2007, 396: 220-230.
- [10] Liu Chenjia, Zhao Aichun, Li Xu, *et al.* Research development on extracting alumina from fly ash[J]. China Nonferrous Metallurgy, 2023, 52(1): 75-83.) (刘宸嘉. 赵爰春, 李旭, 等. 粉煤灰提取氧化铝研究进展 [J]. 中国有色冶金, 2023, 52(1): 75-83.)
- [11] Zhu Keming, Zhang Xinyuan, Wang Le, *et al.* Research progress on alumina extraction process by fly ash alkali method[J]. Light Metal, 2019(9): 4-8. (朱科明, 张馨圆, 王乐, 等. 粉煤灰碱法提取氧化铝工艺研究进展 [J]. 轻金属, 2019(9): 4-8.)
- [12] Wu Yan. Study on extraction of alumina and silica from fly ash[D]. Shenyang: Northeastern University, 2008. (吴艳. 从粉煤灰中提取氧化铝和二氧化硅的研究 [D]. 沈阳: 东北大学, 2008.)
- [13] Yang Jing, Jiang Zhouqing, Ma Hongwen, *et al.* The bauxite resource in China and advances in the techniques of extracting alumina from high-alumina coal fly ash[J]. Earth Science Frontiers, 2014, 21(5): 313-324. (杨静, 蒋周青, 马鸿文, 等. 中国铝资源与高铝粉煤灰提取氧化铝研究进展 [J]. 地学前缘, 2014, 21(5): 313-324.)
- [14] Wang Weijiang, Zhang Yongfeng. Technique status and progress of alumina extraction from coal fly ash[J]. Nonferrous Metals Engineering, 2021, 11(10): 79-91,122.

- (王卫江, 张永锋. 从粉煤灰提取氧化铝的技术现状及工艺进展 [J]. 有色金属工程, 2021, 11(10): 79-91,122.)
- [15] Hou Huiyao, Chen Yongqiang, Ma Baozhong, *et al.* Research status and progress of alumina recovery from fly ash[J]. Mining and Metallurgy, 2021, 30(3): 30-39. (侯慧耀, 陈永强, 马保中, 等. 粉煤灰回收氧化铝工艺研究现状及进展[J]. 矿冶, 2021, 30(3): 30-39.)
- [16] Liu Xiaoting, Wang Baodong, Xiao Yongfeng, *et al.* Pre-desilication process of alumina-rich fly ash in alkali solution[J]. China Powder Technology, 2013, 19(6): 24-27. (刘晓婷, 王宝冬, 肖永丰, 等. 高铝粉煤灰碱溶预脱硅过程研究 [J]. 中国粉体技术, 2013, 19(6): 24-27.)
- [17] Sun Zhenhua, Bao Weijun, Li Huiquan, *et al.* Mineral phase change of high-alumina fly ash during desilication and extraction of Al₂O₃ by alkali dissolution process[J]. Chinese Journal of Process Engineering, 2013, 13(3): 403-408. (孙振华, 包炜军, 李会泉, 等. 高铝粉煤灰预脱硅碱溶提铝过程中的物相转变规律 [J]. 过程工程学报, 2013, 13(3): 403-408.)
- [18] Lan Weixing. Research on the process of extracting aluminum slag from fly ash in Huainan to prepare silica[D]. Huainan: Anhui University of Science and Technology, 2012. (兰伟兴. 淮南粉煤灰提铝渣制备白炭黑的工艺研究 [D]. 淮南: 安徽理工大学, 2012.)
- [19] Ma Zhao. Extraction of alumina and silica from fly ash in ash field[D]. Huainan: Anhui University of Science and Technology, 2015.
 (马钊. 灰场粉煤灰提取氧化铝和白炭黑 [D]. 淮南: 安徽理工大学, 2015.)
- [20] Li Xiaoguang, Ding Shuqiang, Zhuo Jinde, *et al.* Fly ash silica extraction technology and industrial development status[J]. Inorganic Chemicals Industry, 2018, 50(12): 1-4. (李晓光, 丁书强, 卓锦德, 等. 粉煤灰提取二氧化硅技术及工业化发展现状 [J]. 无机盐工业, 2018, 50(12): 1-4.)
- [21] Xue Yang. Study on the preparation of ferrosilicon alloys and enrichment of alumina by carbon thermal reduction of fly ash[D]. Chongqing: Chongqing University, 2020. (薛阳. 粉煤灰碳热还原制备硅铁合金并富集氧化铝的研究 [D]. 重庆: 重庆大学, 2020.)
- [22] Yu Wenzhou, Li Jie, You Zhixiong, *et al.* Study on the preparation of ferrosilicon alloys by carbon thermal reduction of fly ash[C]//Chinese Society for Metals, Proceedings of the 11th China Iron and Steel Annual Conference—S02. Steelmaking and Continuous Casting. Beijing: Metallurgical Industry Press, 2017.

编辑 杨冬梅

(上接第 97 页)

- [10] Xiang Henggao, Chen Yang, Qi Zhixiang, et al. Mechanical behavior of TiAl alloys[J]. Science China Technological Sciences, 2023, 66(9): 2457-2480.
- [11] Huang Feng, Liang Sicheng, Hu Shangxing, *et al.* Status and progress in strengthening and toughening of TiAl alloy[J]. Specal Casting & Nonferrous Alloys, 2023, 43(11): 1441-1446. (黄锋, 梁思诚, 胡尚兴, 等. TiAl 合金强韧化研究现状与进展 [J]. 特种铸造及有色合金, 2023, 43(11): 1441-1446.)
- [12] Wang Zite, Zheng Gong, Qi Zixiang, *et al.* Structures, microstructures, properties, and applications of TiAl alloys[J]. Chin Sci Bull, 2023, 68: 3259-3274. (王子特, 郑功, 祁志祥, 等. TiAl 合金结构、组织、性能与应用 [J]. 科学通报, 2023, 68: 3259-3274.)
- [13] Feng Lihan, Li Bo, Li Qiang, et al. Enhancement of mechanical properties and oxidation resistance of TiAl alloy with addition of Nb and Mo alloying elements[J]. Materials Chemistry and Physics, 2024, 316: 129148.
- [14] Tian Shiwei, Zhang Tengkun, Zeng Shangwu, *et al.* Cyclic oxidation kinetics and thermal stress evolution of TiAl alloys at high temperature[J]. Metals, 2023, 14(1): 28.
- [15] Liu Renci, Wang Peng, Cao Ruxin, *et al.* Influence of thermal exposure at 700 °C on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys[J]. Acta Metallurgica Sinica, 2022, 58(8): 1003-1012. (刘仁慈, 王鹏, 曹如心, 等. 700 °C 热暴露对 β 凝固 γ-TiAl 合金表面组织及形貌的影响 [J]. 金属学报, 2022, 58(8): 1003-1012.)
- $[\ 16\] \quad Birks\ Nell.\ Introduction\ to\ the\ high\ temperature\ oxidation\ of\ meatals [M].\ 2nd\ edition.\ Cambridge\ University,\ 2009:\ 101-157.$
- [17] Jin Xuchen, Ye Peihao, Ji Hongrui, *et al.* Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature[J]. Int. J. Miner. Metall. Mater., 2022, 29(12): 2232-2240.
- [18] Lai Xuping, Li Tianfang, Liu Rui, et al. Effect of Nb, Hf and Zr on oxidation resistance of γ-TiAl alloy[J]. Materials Reports, 2021, 35(Z1): 374-377.
 (赖旭平, 李天方, 刘瑞, 等. 元素 Nb、Hf、Zr 对 γ-TiAl 合金抗氧化性能的影响 [J]. 材料导报, 2021, 35(Z1): 374-377.)
- [19] Wang Yanjing, Li Fei. Study on the high-temperature oxidation resistance of Ti-45Al-8(Nb, Hf, Y)-0.2B alloys[J]. Rare Metal Materials and Engineering, 2016, 45(1): 132-136.

 (王艳晶, 李菲. Ti-45Al-8(Nb, Hf, Y)-0.2B 合金高温抗氧化性研究 [J]. 稀有金属材料与工程, 2016, 45(1): 132-136.)