生物质烘干钛精矿对其酸解性能的影响

王海波,孙 科,程晓哲,王 斌,吴小平

(钒钛资源综合利用国家重点实验室, 四川 攀枝花 617000)

摘 要:针对生物质烘干钛精矿时出现酸解性能下降现象,通过对比不同烘干方式钛精矿酸解性能差异,查找了其对酸解性能的影响,并开展了酸解性能提升探索试验。试验结果表明:生物质直接烘干的钛精矿中混入生物质及其燃烧残渣后,其相对煤气直接烘干的钛精矿、酸解性能中酸解率及钛液抽速下降,且混入量越大,酸解率及钛液抽速下降越大;当生物质直接烘干的钛精矿 C含量为煤气直接烘干钛精矿 C含量的 4 倍时,在反应酸矿比增加0.02,反应酸浓度增加2%,熟化温度增加10℃,熟化时间增加1h的条件下,其酸解率93.00%大于煤气直接烘干钛精矿酸解率90.91%,但其钛液100 mL抽速615 s 低于煤气直接烘干钛精矿钛液100 mL抽速122 s,且随着酸解率的提升,钛液抽速降低,通过将生物质直接烘干的钛精矿与煤气直接烘干的钛精矿按照质量比5:95 混合后进行酸解,其酸解率、钛液抽速与煤气直接烘干钛精矿的酸解率、钛液抽速基本一致。

关键词: 钛精矿; 酸解性能; 烘干; 生物质; 煤气; 酸解率; 抽速

中图分类号:TF823

文献标志码:A

文章编号:1004-7638(2022)03-0033-07

DOI: 10.7513/j.issn.1004-7638.2022.03.006 开放科学 (资源服务) 标识码 (OSID):

听语音 聊科研

Effect of biomass drying titanium concentrate on its acid hydrolysis performance

Wang Haibo, Sun Ke, Cheng Xiaozhe, Wang Bin, Wu Xiaoping

(State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, Sichuan, China)

Abstract: In view of the decline of acid hydrolysis performance of titanium concentrate directly dried by biomass, the influence of different drying methods on acid hydrolysis performance of titanium concentrate were found by comparing the difference of acid hydrolysis performance of titanium concentrate, and the exploration test of improving acid hydrolysis performance was carried out. The results show that after a small amount of biomass fuel and its combustion residues mixed into the titanium concentrate directly dried by biomass fuel, the acid hydrolysis rate and the filtration rate of titanium liquid in the titanium concentrate are lower than that of the titanium concentrate directly dried by coal gas. The larger the mixed amount, the greater the drop in the acid hydrolysis rate and the filtration rate of titanium liquid. When the C content of direct-drying titanium concentrate with biomass is 4 times that of the direct-drying titanium concentrate with coal gas and keep the conditions of reaction acid-ore ratio increasing 0.02, reaction acid concentration increasing 2%, ripening temperature increasing 10 °C and ripening time increasing 1 h, the acid hydrolysis rate of titanium concentrate dried by biomass fuel is

收稿日期:2022-02-28

基金项目:国家自然科学基金项目联合基金项目 (基于攀西钛资源的 Ti_4O_7 纳米材料的可控制备及其燃料电池高值应用研究, U19A20100)。

93.00%, which is higher than 90.91% of titanium concentrate dried by coal gas. But the extraction rate of 100 mL titanium liquid is 615 s lower than 122 s of the latter. With the increase of acid hydrolysis rate, the pumping speed of titanium liquid decreases. The titanium concentrate directly dried by biomass fuel and coal gas are mixed according to the mass ratio of 5:95, the acid hydrolysis rate of titanium concentrate and the filtration rate of titanium liquid are almost the same as those of gas-drying titanium concentrate.

Key words: titanium concentrate, acid hydrolysis performance, drying, biomass, coal gas, acid hydrolysis rate, extraction rate

0 引言

钛白粉广泛应用于涂料、塑料、造纸、油墨和 光催化等领域[1-3]。目前钛白粉的主要生产方法是 硫酸法和氯化法[4-5],我国主要以硫酸法为主,占比 约90%[6]。在硫酸法生产钛白粉的过程中,酸解是 第一道关键工序[7]。酸解钛原料主要是钛精矿和酸 溶性钛渣,酸溶性钛渣一般由钛精矿通过电炉还原 冶炼获得[8-10]。钛精矿一般由钒钛磁铁矿或者钛铁 矿通过采选获得,由于钛精矿在重选、浮选或磁选 过程均处于悬浮液状态,因此钛精矿经过采选后含 有大量水分,往往需要堆放处理降低其水分含量,但 堆放后其水分含量仍能达到10%~20%,而钛精矿 应用于硫酸法钛白时,进厂时需要控制水分含量≤ 0.5%, 否则将严重影响钛精矿的输送、研磨及酸解 性能等[11-12]。酸解性能作为酸解重要的表征指标, 主要包括酸解率及酸解后钛液的抽速等。为了提高 烘干效率, 钛精矿的烘干方式一般采用热量直接与 钛精矿接触,使得钛精矿中水分快速蒸发,而热量往 往通过煤气燃烧产生,现在部分钛精矿烘干企业为 了降低生产成本,采用生物质燃烧产生热能直接烘 干钛精矿。生物质是指将生物质材料燃烧作为燃料, 一般主要是农林废弃物(如秸秆、锯末、甘蔗渣、稻 糠等),通过添加粘接剂压缩成颗粒状[13]。生物质由

可燃质、无机物及水分组成,主要元素组成为 C、H、O 及少量的 N、S 等,并含有灰分和水分,含量分别为 40%~45%、8%~10%、20%~30%、<0.15%、0.02%,灰分含量 3%~5%^[14-15]。虽然该方式能节省烘干成本,但采用该方式烘干的钛精矿却经常出现酸解性能下降的现象,导致钛精矿应用企业不愿意应用该方式烘干的钛精矿。

目前关于钛精矿化学组成、物相组成及酸解工艺等工艺参数对其酸解性能(代表性指标为酸解率及酸解钛液抽速)影响研究较多,而关于利用生物质燃烧产生热量烘干钛精矿对其酸解性能的影响研究较少,影响机理不明,因此无法找到解决措施^[16-19]。因此有必要开展相关技术研究,以期为生物质烘干钛精矿提供技术支撑。笔者在实验室对不同烘干方式的钛精矿进行酸解性能评价试验。

1 试验

1.1 试验原料与仪器

1.1.1 试验原料

去离子水(实验室自制)、浓硫酸(成都科龙试剂有限公司)、不同烘干工艺的钛精矿(攀钢集团,工业级)。

煤气直接烘干与生物质直接烘干的钛精矿的主 要化学成分如表 1 所示。

表 1 不同烘干方式的钛精矿主要化学成分

Table 1 Main chemical components of titanium concentrate with different drying methods

编号	С	FeO	MgO	MnO	TFe	SiO ₂	TiO ₂	Al_2O_3	烘干燃料
1	0.080	35.70	4.89	0.66	31.88	2.46	47.29	0.94	煤气
2	0.160	35.86	4.99	0.70	32.00	2.39	47.19	1.06	生物质
3	0.320	35.54	5.01	0.68	32.00	2.53	47.25	1.05	生物质

由表 1 可知, 两种烘干方式对应的钛精矿的主要化学成分大部分为 TiO_2 、FeO、TFe 及 MgO, 少部分为 SiO_2 、 Al_2O_3 及 C 等, 两种烘干方式对应的钛精

矿的主要化学成分除了 C 含量外, 其它化学成分含量差别不大; 生物质直接烘干的钛精矿的 C 含量比煤气直接烘干的钛精矿 C 含量高 1 倍以上, 煤气直

接烘干后的钛精矿含有 C 是因为含 C 有机浮选剂 虽然经过烘干过程部分挥发,但其仍有部分吸附于 钛精矿表面,而生物质直接烘干的钛精矿中 C 是由 有机浮选剂及有机生物质存在钛精矿表面共同造 成的。

煤气直接烘干与生物质直接烘干的钛精矿的红 外光谱结果如图 1 所示。

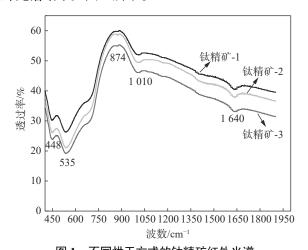


图 1 不同烘干方式的钛精矿红外光谱 Fig. 1 Infrared spectra of titanium concentrate with different drying methods

由图 1 可知,煤气直接烘干与生物质直接烘干的钛精矿红外光谱官能团吸收峰的位置均相同,这表明不同烘干方式对应的钛精矿的官能团种类基本相同。

1.1.2 试验仪器

油浴锅(D2004W,上海五久自动化设备有限公司)、循环水式多用真空泵(SHB-III,郑州长城科工

贸有限公司)、鼓风干燥箱(DB210-SCB, 赛普斯天宇设备有限责任公司)、矿物解离分析仪(MLA650, 美国 FEI公司)、傅里叶红外光谱仪(Nicolet IS50 FTIR, 赛默飞世尔科技(中国)有限公司)、粒度仪(WFXZeta sizer 3 000, 马尔文仪器有限公司)。

12 试验方法

1.2.1 磨矿

先称取 200 g 钛精矿放在密封式制样机中研磨 1 min, 倒出, 刷干净, 然后再准确称取 400.0 g 钛精矿放置在密封式制样机中研磨 10 min。

1.2.2 酸解性能评价试验

称取 100.0 g 钛精矿按照一定酸解反应条件进行酸解反应,记录酸解反应的最大膨胀体积,酸解结束后将其放置在鼓风干燥箱中恒温熟化一定时间,然后取出冷却,加脱盐水进行浸出,浸出结束后,倒入 1 L 量筒中,加入一定量絮凝剂,搅拌均匀,静置 30 min,记录钛液上清液高度,取上部钛液 100 mL进行抽滤,记录抽干时间(抽速),然后将剩余的钛液进行抽滤,抽滤结束后用脱盐水冲洗滤纸上残渣,直至残渣无钛液残留,记下钛液体积,将残渣放置在鼓风干燥箱中烘干,烘干后称量残渣重量,记下残渣重量,测量钛液及残渣中二氧化钛含量,计算钛精矿酸解率。

2 结果与讨论

2.1 不同烘干方式钛精矿的酸解性能 不同烘干方式的钛精矿酸解性能评价试验结果 如表 2 所示。

表 2 不同烘干方式钛精矿酸解试验结果
Table 2 Acid hydrolysis results of titanium concentrate with different drying methods

编号	100 mL抽速/s	酸解率/%	主反应体积膨胀/mL	上清液高度/mL	试验现象
1	120	90.74	500	400	沉降钛液上清液较多, 过滤后滤纸上基本无黑色残渣
1	122	90.12	510	410	几阵执权工 捐权权多,过亿/7亿4以上基平元宗已久但
2	437	87.70	600	150	沉降钛液上清液较少, 过滤后滤纸上有黑色残渣
2	435	87.60	590	143	机解纵似工得做较少,过 滤/口滤纸工有黑巴戏道
2	450	78.72	1 000	100	2710人比涉 1. 注流扩充 1、 上海 C. 海加 1. 扩 图 4. 72 法
3	448	78.07 1 050	1 050	104	沉降钛液上清液较少,过滤后滤纸上有黑色残渣

由表 2 可知, 生物质直接烘干的钛精矿酸解钛液相对煤气直接烘干的钛精矿酸解钛液 100 mL 抽速慢, 煤气直接烘干的钛精矿-1 酸解钛液 100 mL 抽速约为 120 s, 而生物质直接烘干的钛精矿-2 及钛

精矿-3分别对应的酸解钛液 100 mL 抽速分别约为 435 s 和 450 s; 生物质直接烘干的钛精矿相对煤气直接烘干的钛精矿酸解率低, 煤气直接烘干的钛精矿-1 的平均酸解率为 90.43%, 而生物质燃料烘干的

钛精矿-2 及钛精矿-3 的平均酸解率分别为 87.65% 和 78.40%; 生物质直接烘干的钛精矿酸解主反应体积膨胀量相对煤气直接烘干的钛精矿酸解主反应体积膨胀量大, 煤气直接烘干的钛精矿-1 酸解主反应体积膨胀量约为 500 mL, 而生物质直接烘干的钛精矿-2 及钛精矿-3 分别对应的主反应体积膨胀量分

别约为 600 mL 和 1 000 mL。

2.2 酸解性能差异原因分析

2.2.1 钛精矿粒度分析

钛精矿粒度对其酸解性能影响较大,因此利用 马尔文粒度仪分别对不同烘干方式的钛精矿及其磨 后钛精矿进行了粒度测试,测试结果如表 3 所示。

表 3 不同烘干方式的钛精矿粒度
Table 3 Particle sizes of titanium concentrate with different drying methods

 钛精矿编号	研磨状态	D_{10} / μm	D_{50} / μm	D ₉₀ / μm	径距	烘干燃料
1		47.30	110.00	213.00	1.51	煤气
2	磨前	33.30	94.80	276.00	2.56	生物质
3		22.20	85.90	297.00	2.98	生物质
1-1		3.32	38.50	110.00	2.78	煤气
2-1	磨后	2.53	26.40	97.00	3.37	生物质
3-1		1.57	15.00	68.70	4.47	生物质

由表 3 可知, 磨前的钛精矿中, 两种烘干方式对应的钛精矿的粒度结果差别较大, 其中生物质直接烘干的钛精矿-2、钛精矿-3 相对煤气直接烘干的钛精矿-1 的粒度 D_{10} 及 D_{50} 小, 但是 D_{90} 及径距大; 同样生物质直接烘干的钛精矿-3 相对钛精矿-2, 粒度 D_{10} 及 D_{50} 小, 但 D_{90} 及径距大。这与生物质直接烘干钛精矿时, 部分大颗粒生物质、小颗粒生物质及其燃烧残渣进入了被烘干的钛精矿中有关, 且混入钛精矿中的大颗粒生物质、小颗粒生物质及其燃烧残渣越多, D_{10} 及 D_{50} 减少程度越大, D_{90} 及径距增加程度越大; 由于混入钛精矿中的大颗粒生物质、小

颗粒生物质及其燃烧残渣相对钛精矿更容易磨细,因此磨后的钛精矿中,生物质烘干的钛精矿相对煤气烘干的钛精矿粒度 D_{10} 、 D_{50} 及 D_{90} 小,但径距大。理论上磨后钛精矿粒度越小,其酸解率越大,但其与实际情况相反,说明钛精矿粒度不是影响不同烘干方式钛精矿酸解性能不同的原因。

2.2.2 钛精矿物相形貌及组成分析

钛精矿物相形貌及组成对其酸解性能影响较大, 因此有必要开展物相形貌及组成分析。煤气直接烘 干与生物质直接烘干的钛精矿的扫描电镜结果如 图 2 所示。

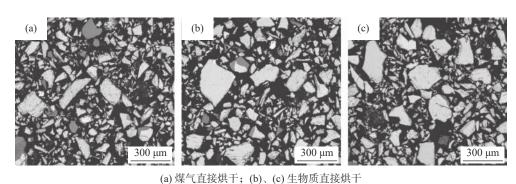


图 2 不同烘干方式的钛精矿 SEM 形貌

Fig. 2 SEM micrographs of titanium concentrate with different drying methods

由图 2 可知,不同烘干方式钛精矿的形貌基本相同,钛精矿主要呈长条形,部分呈近似椭圆形。

钛精矿的主要物相组成结果如表 4 所示。由表 4 可知, 生物质直接烘干与煤气直接烘干的钛精

矿主要物相组成基本相同,主要物相是钛铁矿,含量约 90.20%,其次是辉石,含量约为 3.00%,其它物相含量均小于 1.50%。这说明生物质直接烘干钛精矿不会影响钛精矿的主要物相组成。

%

表 4 不同烘干方式钛精矿主要物相组成

Table 4 Main phase compositions of titanium concentrate with different drying method	Table 4	Main phase composition	s of titanium con	centrate with differen	t drying methods
--	---------	------------------------	-------------------	------------------------	------------------

编号	钛铁矿	辉石	镁橄榄石	磁铁矿	透辉石	铁铝榴石	绿泥石	磁黄铁矿	铁板钛矿	金红石	榍石	斜长石
1	90.03	3.01	0.45	0.86	1.38	0.11	0.87	0.32	0.25	0.01	0.24	0.69
2	90.11	3.37	0.77	0.80	1.19	0.25	0.92	0.47	0.21	0.07	0.25	0.99
3	90.53	2.93	0.38	0.82	0.94	0.21	0.77	0.32	0.52	0.01	0.36	0.54

因此不同烘干方式钛精矿物相形貌及物相组成 基本相同,不是影响不同烘干方式钛精矿酸解性能 差异的原因。

2.2.3 钛精矿化学组成分析

钛精矿化学组成对其酸解性能影响较大,通过 钛精矿化学组成(表 1)可知,生物质直接烘干的钛 精矿相对煤气直接烘干的钛精矿除了 C 含量外,其 它化学组成基本相同。为了查找生物质直接烘干的 钛精矿 C 含量偏高的原因,有必要对其烘干工艺 (图 3)进行分析。

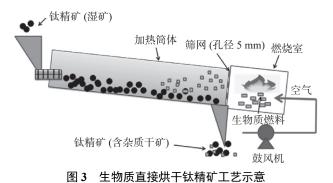


Fig. 3 Process diagram of direct drying titanium concentrate by biomass

当采用生物质直接烘干的钛精矿时,少量粒度 较小生物质及生物质燃烧残渣混入钛精矿中,使钛 精矿 C 含量增加。生物质直接烘干的钛精矿酸解 率降低的原因是生物质含有纤维、淀粉等可燃质, 这些可燃质在浓硫酸与高温的条件下,其容易炭化 变黑,碳继续与浓硫酸反应,生成二氧化碳气体、二 氧化硫气体及水蒸气(C+2H₂SO₄(浓)≜CO₂↑+ 2SO,↑+2H,O↑),试验过程生物质直接烘干的钛精 矿酸解反应最大膨胀体积相对煤气直接烘干钛精矿 酸解反应最大膨胀体积的增加现象验证了该结论, 而产生的大量气体加速了反应体系的热量损失,与 此同时, 硫酸由于与生物质发生化学反应, 消耗了一 部分硫酸,减少了其与钛精矿反应的硫酸量,从而降 低了反应酸矿比及反应酸浓度,因此最终因反应温 度降低、反应酸矿比及反应酸浓度降低,生物质直 接烘干的钛精矿酸解率降低; 当其酸解钛液在抽滤 时,其中粒度较小的生物质炭化颗粒及生物质燃烧 残渣将堵塞抽滤用的滤纸孔洞,抽速变慢,酸解后的 钛液过滤后出现的黑色残渣也验证了该结论。

2.3 酸解性能的提升

为了验证生物质直接烘干方式对钛精矿酸解性能的影响是由于其中夹杂的生物质及其燃烧残渣造成,选取生物质直接烘干的钛精矿-3与煤气直接烘干的钛精矿-1作为研究对象,开展了验证及优化试验,试验结果如表5所示。

表 5 验证及优化试验 Table 5 Results of validation and optimization experiments

编号	矿-1:矿-3	酸浓度/%	酸矿比	熟化温度/℃	熟化时间/h	酸解率/%	100 mL抽速/s	备注	
1	100:0	83	1.58	155	2	90.91	122	泰台	
2	0:100	83	1.58	155	2	78.56	448	空白	
3	0:100	85	1.60	155	2	88.28	514	耐烟工业投 机	
4	0:100	85	1.60	165	3	93.00	615	酸解工艺优化	
5	90:10	83	1.58	155	2	87.06	186	→ 再1 再会 <i>协和</i>	
6	95:5	83	1.58	155	2	91.02	132	互配酸解	

由表 5 可知, 当生物质直接烘干的钛精矿-3 的 反应酸浓度由 83% 提升至 85%, 反应酸矿比由 1.58 提升至 1.60, 其它酸解条件不变的情况下, 其酸 解率由 78.56% 提升至 88.28%, 但其酸解钛液 100 mL 抽速则由 448 s 升高至 514 s, 且慢于煤气直接烘干钛精矿-1 酸解钛液 100 mL 抽速 122 s; 当钛

精矿-3 在前述酸解条件下,继续将熟化温度由 155 ℃ 提升至 165 ℃, 熟化时间由 2 h 提升至 3 h 后, 其它 酸解条件不变的情况下,其酸解率继续升高,达到 了 93.00%, 超过煤气直接烘干钛精矿-1 酸解率 90.91%, 但其酸解钛液 100 mL 抽速变为 615 s; 生 物质直接烘干的钛精矿-3 通过增加反应酸矿比及 反应酸浓度等酸解工艺优化措施后,其酸解率能够 达到较高的水平,这充分验证了生物质会消耗部分 反应酸;但其酸解钛液抽速变得更慢,这是因为酸解 率提升后,酸解残渣粒度变得更细,沉降速度变慢, 滤纸过滤孔洞更容易被堵塞,因此其抽速变慢;通过 将生物质直接烘干钛精矿-3 与煤气直接烘干钛精 矿-1 按照质量比 5:95 互配, 其酸解率由 78.56% 提 升至 91.02%, 与钛精矿-1 单独酸解的酸解率基本一 致,且其酸解钛液 100 mL 抽速为 132 s 与钛精矿-1 单独酸解的钛液 100 mL 抽速基本一致, 这说明生 物质直接烘干后的钛精矿中混有生物质或其残渣的 量较少时,不会对其酸解率及钛液抽速产生不良 影响。

因此为了避免生物质直接烘干钛精矿对其酸解性能产生不良影响,可采取生物质间接供热方式,避免生物质及其燃烧残渣进入钛精矿中,也可采取将

生物质直接烘干钛精矿与煤气直接烘干钛精矿按照一定质量比例互配进行酸解。

3 结论

- 1)生物质直接烘干的钛精矿相对煤气直接烘干的钛精矿,物相组成基本相同,除了 C 含量偏高外,其它主要化学组成基本相同,磨前及磨后钛精矿粒度分布均更宽。
- 2)生物质直接烘干的钛精矿中混入生物质及其燃烧残渣后,钛精矿酸解率下降,酸解钛液抽速降低, 且混入量越大,酸解率越低,钛液抽速越慢。
- 3)生物质直接烘干的钛精矿,当其 C含量为煤气直接烘干钛精矿 C含量的 4倍时,在反应酸矿比增加 0.02,反应酸浓度增加 2%,熟化温度增加 10℃,熟化时间增加 1 h 的条件下,其酸解率 93.00%,大于煤气直接烘干钛精矿酸解率 90.91%,但其钛液 100 mL 抽速 615 s 低于煤气直接烘干钛精矿钛液 100 mL 抽速 122 s,且酸解率与钛液抽速成反比;通过将生物质直接与煤气直接烘干的钛精矿按照质量比 5:95 混合后酸解,其酸解率及钛液抽速基本一致。

参考文献

- [1] Karimia L, Yazdanshenas M E, Khajavi R, *et al.* Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric[J]. Applied Surface Science, 2015, 332: 665–673.
- [2] Romanovska N I, Manoryk P A, Ermokhina N I, *et al.* Effect of structural and dimensional characteristics of TiO₂ and its photocatalytic activity in the oxidation of tetracycline[J]. Theoretical and Experimental Chemistry, 2019, 55(5): 345–353.
- [3] Sobczyk-guzenda Anna, Szymanski Witold, Jedrzejczak Anna, *et al.* Bactericidal and photowetting effects of titanium dioxide coatings doped with iron and copper/fluorine deposited on stainless steel substrates[J]. Surface & Coatings Technology, 2018, 347; 66–75.
- [4] Matsukura A, Onoda H. Influences of additives on phosphoric acid treatment of titanium dioxide as a novel white pigment[J]. Journal of Advanced Ceramics, 2015, 4(3): 211–216.
- [5] Kang J, Okabe T H. Removal of iron from titanium ore by selective chlorination using TiCl₄ under oxygen content atmosphere[J]. International Journal of Mineral Processing, 2016, 149: 111–118.
- [6] Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 1-4.

 (毕胜. 近年中国钛白粉行业基本状况及发展展望[J]. 钢铁钒钛, 2021, 42(2): 1-4.)
- [7] Sneha, Samal. Synthesis and characterization of titanium slag from ilmenite by thermal plasma processing[J]. Journal of Metals, 2016, 68(9): 1–10.
- [8] Hu Kai, Zhang Run, Li Shengping, *et al.* Conductivity and melt structure of TiO₂-FeO-X (SiO₂, CaO, MgO) ternary high titanium slag[J]. China Journal of Nonferrous Metals, 2019, 29(1): 167–175. (胡凯, 张润, 李生平, 等. TiO₂-FeO-X(SiO₂, CaO, MgO)三元高钛渣导电特性及其熔体结构[J]. 中国有色金属学报, 2019, 29(1): 167–175.)
- [9] Lu Changyuan, Zou Xingli, Lu Xionggang, et al. Hydrogen reduction kinetics of Panzhihua ilmenite[J]. The Chinese Journal

- of Nonferrous Metals, 2016, 26(12): 3266-3273.
- [10] Wu Ling, Chen Jiabin, Zhong Shengkui, *et al.* Effect of mechanical activation-hydrochloric acid atmospheric leaching of ilmenite[J]. China Journal of Nonferrous Metals, 2015, 25(1); 211–219. (伍凌, 陈嘉彬, 钟胜奎, 等. 机械活化-盐酸常压浸出钛铁矿的影响[J]. 中国有色金属学报, 2015, 25(1); 211–219.)
- [11] Li Yu, Lei Ying, Zhang Libo, *et al.* Microwave drying characteristics and kinetics of titanium concentrate[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 202–207.
- [12] Cai Ning, Chen Chaochun, Wang Yafu, *et al.* Heat transfer characteristics of vibrating fluidized bed for fine titanium concentrate[J]. Iron Steel Vanadium Titanium, 2001, 22(2): 33–36. (蔡宁, 陈朝春, 王亚夫, 等. 微细粒级钛精矿振动流化床的传热特性[J]. 钢铁钒钛, 2001, 22(2): 33–36.)
- [13] Sun Yu, Meng Changfang. Study on NO emission characteristics of biomass/bituminous coal powder fuel under air staged combustion[J]. Energy and Environmental Protection, 2021, 43(10): 1–6.

 (孙禹, 孟长芳. 生物质/烟煤粉体燃料在空气分级燃烧下NO排放特性研究[J]. 能源与环保, 2021, 43(10): 1–6.)
- [14] Li Xian, Han Kuihua, Wang Xi, *et al.* Research progress of biomass briquette fuel additives[J]. Renewable Energy, 2021, 39(12): 1563–1569.

 (李贤, 韩奎华, 王茜, 等. 生物质成型燃料添加剂的研究进展[J]. 可再生能源, 2021, 39(12): 1563–1569.)
- [15] Liu Yufei, Tang Jie, Chen Xiaohui, *et al.* Estimation of thermodynamic properties of complex fuels[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2775–2779.

 (刘宇飞, 唐洁, 陈小辉, 等. 复杂燃料热力学性质的估算研究[J]. 工程热物理学报, 2021, 42(11): 2775–2779.)
- [16] Richard G Haverkamp, Desiderius Kruger, Ranjeeth Rajashekar. The digestion of New Zealand ilmenite by hydrochloric acid[J]. Hydrometallurgy, 2016, 163: 198–203.
- [17] Jonglertjunya, Woranart, Rattanaphan, *et al.* Kinetics of the dissolution of ilmenite in oxalic and sulfuric acid solutions[J]. Asia-Pacific Journal of Chemical Engineering, 2014, 9(1): 24–30.
- [18] Parapari, ParisaSemsari, Irannajad, *et al.* Modification of ilmenite surface properties by superficial dissolution method[J]. Minerals Engineering, 2016, 9(2): 160–167.
- [19] Wang Haibo, Wu Xiaoping, Gao Jian, *et al.* Kinetics of sulfuric acid leaching of ilmenite[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 6–10. (王海波, 吴小平, 高健, 等. 硫酸浸取钛铁矿动力学研究[J]. 钢铁钒钛, 2020, 41(6): 6–10.)

编辑 杨冬梅

国内最大钛合金挤压装备成功投产

(2022年6月7日消息)近日,由国机重装中国重型院为宝鸡钛业股份有限公司(简称宝钛股份) 成套供货的目前国内最大的钛合金挤压装备—6300t钛合金挤压生产线一次性热负荷试车成功。

据悉,6300t 钛合金挤压生产线是宝钛股份"高品质钛锭、管材型材生产线建设项目"的核心设备,生产的钛合金无缝管材最大外径达Ø325 mm,钛合金型材最大截面积达5000 mm。

该项目填补了我国高性能大截面复杂结构钛合金型材挤压成型装备及技术的空白,实现大截面钛合金型材自主生产,将极大满足我国航空航天领域对大截面高性能复杂结构型材的需求。

中国重型院采用蓄势器油压传动高速挤压电液控制技术、机器人智能化辅助系统等多项新技术,实现 钛合金挤压高可靠性自动化生产。目前,生产线系统控制精准,产品质量优良,用户赞誉有加。

摘自 http://www.sc.chinanews.com.cn/bwbd/2022-06-07/168505.html