助熔剂对 CaO-Al₂O₃ 基保护渣 理化性能的影响

李 晨1,2, 亓 捷1,2, 刘承军1,2*, 姜茂发1,2

(1. 多金属共生矿生态化冶金教育部重点实验室, 辽宁 沈阳 110819; 2. 东北大学冶金学院, 辽宁 沈阳 110819)

摘 要:针对高铝钢用钙铝基连铸保护渣在浇铸过程中存在的渣条严重、粘结漏钢报警频发等问题,通过调整助熔剂含量,考察了以 B_2O_3 替代 CaF_2 对保护渣熔化温度、黏度及结晶性能的影响。结果表明,随着 B_2O_3 替代 CaF_2 质量分数的增加,保护渣的熔化温度和转折点温度不断降低,高温下的黏度不断提高。而且, CaF_2 质量分数较高时,保护渣的析晶性能较强,高温处析出 $Ca_{12}Al_{14}O_{32}F_2$ 。随着 B_2O_3 取代 CaF_2 质量分数的增加,保护渣的析晶性能受到明显抑制,析晶物相的变化规律为 $Ca_{12}Al_{14}O_{32}F_2 \rightarrow 2CaO\cdot Al_2O_3\cdot SiO_2 \rightarrow \theta$ 一液相。 B_2O_3 取代 CaF_2 质量分数为10%时,保护渣的析晶性能得到有效抑制,可有效降低粘结报警频率,满足高铝钢种的浇铸需求。

关键词:高铝钢;连铸保护渣;黏度;析晶;助熔剂

中图分类号: TF777 文献标志码: A 文章编号: 1004-7638(2021)04-0124-07

DOI: 10.7513/j.issn.1004-7638.2021.04.021 开放科学 (资源服务) 标识码 (OSID):

听语音 聊科研

Effect of fluxing agent on the properties of CaO-Al₂O₃ based mold flux

Li Chen^{1, 2}, Qi Jie^{1, 2}, Liu Chengjun^{1, 2*}, Jiang Maofa^{1, 2}

(1. Key Laboratory of Ecological Metallurgy of Multimetallic Mineral (Ministry Education), Shenyang 110819, Liaoning, China; 2. School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China)

Abstract: In order to address the problems of serious slag strips and breakout alarms in the process of high-aluminum steel continuous casting using calcium-aluminum-based mold flux, the comprehensive effect of B_2O_3 and CaF_2 on the melting temperature, viscosity and crystalline properties were investigated. The results showed that as the mass fraction of CaF_2 replaced by B_2O_3 increased, the melting temperature and breaking temperature of the mold flux decreased, and the viscosity showed an increasing trend. Moreover, the mold flux had stronger crystallization ability with high content of CaF_2 , leading to the precipitation of $Ca_{12}AI_{14}O_{32}F_2$ at a high temperature. As the mass fraction of CaF_2 replaced by B_2O_3 increases, the crystallization ability had been obviously inhibited, and the crystalline phases changes as follows: $Ca_{12}AI_{14}O_{32}F_2 \rightarrow 2CaO \cdot AI_2O_3 \cdot SiO_2 \rightarrow$ a single liquid phase. When B_2O_3 replaces CaF_2 with a mass fraction of 10%, the crystallization performance of the mold flux was effectively suppressed, which could effectively reduce the sticking breakout alarm and meet the casting requirements of high-aluminum steel.

Key words: high-aluminum steel, continuous casting mold flux, viscosity, crystallization, fluxing agent

收稿日期:2020-12-29

基金项目:国家自然科学基金项目(U1908224, 51904064, 51874082);中国博士后科学基金项目(2020T130084, 2019M661114)。

作者简介: 李晨(1995-), 男, 硕士生, 主要从事连铸保护渣研究, E-mail: 1043483605@qq.com; *通讯作者: 刘承军(1974-), 男, 博士, 教授, 主要从事高品质钢研制开发与特色冶金渣系设计, E-mail: liucj@smm.neu.edu.cn。

%

0 引言

随着社会各行各业的快速发展,人们对先进高 强度钢需求逐渐增加。以汽车行业为例,向钢中加 入铝形成的高铝含量 TRIP 钢具有高强度、高塑性 和高加工硬化性能,能在满足安全性需求的同时实 现车身轻量化,减少汽车油耗及尾气排放,起到节能 环保的重要作用[1]。因此,以TRIP钢为代表的高铝 钢逐渐成为行业研发的热点。然而,高铝钢中 Al 含 量高达 0.5%~5%, 采用传统的 CaO-SiO, 基保护渣 进行浇铸时,结晶器内普遍存在严重的渣金界面反 应,使得保护渣的成分发生改变,恶化冶金功能,导 致铸坯质量缺陷^[2]。目前,低反应性的 CaO-Al₂O₃ 基保护渣有效减弱了渣金界面反应趋势,成为极具 潜力的新型保护渣[3],但其在浇铸过程中性能的稳 定性仍有待提高。国内某钢厂在采用含 F 的 CaO-Al₂O₃ 基保护渣进行高铝钢连铸试生产时, 存在保护 渣析晶能力过强,浇铸过程渣条粗大、粘结报警频 发等问题,无法实现长时间、多炉次连浇。

针对上述问题,文献调研表明,通过助熔剂的调整,可有效改善其结晶性能。于雄^[4]等研究了F(5.8%~8.8%)对高铝钢连铸保护渣理化性能的影响,随着F含量的增加,熔化温度和黏度均呈降低趋势,而转折点温度和析晶温度却不断增加。Yang^[5]在研究F含量对CaO-Al₂O₃基保护渣凝固行为、黏度、结构和传热的影响中发现,随着F含量从4.0%提高至12.5%,保护渣的黏度有所降低,析晶性能有

所增强。而亓捷等^[6-7] 在不同 B_2O_3 含量对含 Ce_2O_3 钙铝基保护渣理化性能的研究中发现,随着 B_2O_3 含量的增加,保护渣的熔化温度、黏度和转折点温度 均呈降低趋势,这也与张磊和王杏娟等人^[7-8] 的研究结果相一致。此外, $Yan^{[9]}$ 等研究表明,在 $CaO-Al_2O_3$ 基保护渣中,添加 CaF_2 或 B_2O_3 可降低初始结晶温度,延长结晶孕育时间。与 CaF_2 相比, B_2O_3 具有更强的抑制 $CaO-Al_2O_3$ 基保护渣结晶的能力。

综合上述分析, CaF₂含量的增加将导致 CaO-Al₂O₃ 基保护渣析晶能力增强, 而 B₂O₃含量的提高在一定程度上可抑制保护渣结晶性能。因此,笔者以某钢厂连铸用 CaO-Al₂O₃ 基保护渣为基础, 研究助熔剂 CaF₂ 和 B₂O₃ 在其中的综合作用规律, 通过调整二者的含量解决浇铸过程保护渣析晶能力较强, 浇铸过程渣条粗大、粘结报警频发等问题, 为高铝钢连铸保护渣的设计开发和性能改进提供了有效的理论依据。

1 试验过程

1.1 试验原料

参考表 1 所示的国内某钢厂高铝钢连铸保护渣成分,设计不同试验渣成分如表 2 所示。其中,CaF₂ 添加量由 23%逐渐降至 13%, B₂O₃含量由 5%逐渐增加至 15%。表 1 所示各试验渣均以纯化学试剂 CaO, SiO₂, Al₂O₃, CaF₂, B₂O₃, Na₂CO₃和 Li₂CO₃(所有纯度 > 99.5%)为原料在重烧炉中经 1 400 ℃ 预熔—水淬制得。

表 1 国内某钢厂高铝钢连铸保护渣主要化学成分

Min chemical compositions of high-aluminum steel continuous casting mold flux in a domestic steel plant

14010 1 1/111	- chemical composition	5 01 111 g 11 411411111411		g	uomestre seeer plane 70
CaO	SiO_2	Al_2O_3	CaF ₂	$\mathrm{Li_2O}$	CaO/Al ₂ O ₃
31.81	7.58	19.7	25.74	9.14	1.33

表 2 试验用高铝钢连铸保护渣化学成分
Table 2 Chemical compositions of mold flux used for high-Al steel continuous casting

序号	CaO	SiO ₂	Al_2O_3	Na ₂ O	CaF ₂	Li ₂ O	B_2O_3	CaO/Al ₂ O ₃
S1	32	6	24	5	23	5	5	1.33
S2	32	6	24	5	18	5	10	1.33
S3	32	6	24	5	13	5	15	1.33

1.2 试验方法

以预熔渣为原料,利用熔点熔速仪采用半球点 法测试渣样熔化温度;利用旋转柱体法以 RTW-10 熔体物性综合测定仪测定保护渣连续降温过程中的 黏度—温度曲线,测试过程降温速率为 3 ℃/min。 结合黏度—温度曲线,对不同特征温度下的渣样进 行水淬,利用扫描电镜、能谱分析以及 X 射线衍射分析技术对降温过程保护渣的析晶物相进行检测分析。

2 结果分析与讨论

2.1 助熔剂含量对高铝钢保护渣熔化温度的影响

考察了各保护渣的熔化温度随 B_2O_3 和 CaF_2 含量的变化情况。发现,随着 B_2O_3 替代 CaF_2 质量分数的增加,保护渣的熔化温度由 1 200 C(S1 渣)逐渐降至 1 043 C(S2 渣)和 956 C(S3 渣)。由此可

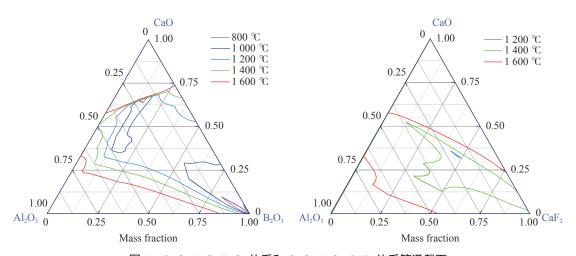


图 1 CaO-Al₂O₃-B₂O₃ 体系和 CaO-Al₂O₃-CaF₂ 体系等温截面 Fig. 1 Isothermal sections of CaO-Al₂O₃-B₂O₃ system and CaO-Al₂O₃-CaF₂ system

2.2 助熔剂含量对高铝钢保护渣黏度的影响

图 2 为等质量 B_2O_3 代替 CaF_2 条件下保护渣的 黏度-温度曲线。表 3 为保护渣在 $1\,300\,^{\circ}$ 时的黏度和黏度转折点温度。

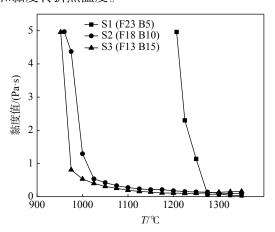


图 2 不同 B₂O₃ 代替 CaF₂ 质量分数条件下保护渣的黏度-温度曲线

Fig. 2 Viscosity-temperature curves of mold flux with different contents of B₂O₃ as replacement for CaF₂

由表 3 可知, 随着 B_2O_3 代替 CaF_2 质量分数的增加, 保护渣高温处的黏度不断提高, 1 300 $^{\circ}$ 的黏

度值由 0.076 Pa·s 增加至 0.118 Pa·s; 黏度转折点温度不断降低, 由 1 260 ℃ 降低至 975 ℃。

表 3 不同 B₂O₃ 代替 CaF₂ 质量分数条件下保护渣在 1 300 ℃ 的黏度以及转折点温度

Table 3 Viscosity at 1 300 $^{\circ}$ C and breaking temperature of mold flux with different contents of B_2O_3 as replacement for CaF_2

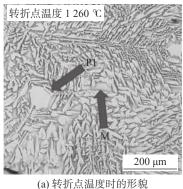
序号	1 300 ℃黏度/(Pa·s)	转折点温度/℃
S1	0.076	1 260
S2	0.102	1 004
S3	0.118	975

高温下熔渣表观黏度的变化与其内部熔体结构密切相关。上述变化中,保护渣黏度增加,其原因如下:在本研究渣系条件下,当 F 含量较高时,F 优先取代 [AlO₄]⁵⁻四面体中桥氧,形成 Al-O-F 四面体结构单元,渣中桥氧数减少,非桥氧数增多;而且 [AlO₄]⁵⁻四面体中的非桥氧同样可被 F 取代,形成 [AlO_xF_{4-x}]^{-1-x} 络合物,导致体系复杂程度降低^[10]。此外,F同样可解离复杂的 Al-O-Si 结构单元,进而降

低熔渣聚合程度[11]。因此,随着渣中 CaF2含量的降 低,保护渣黏度有所提高。另一方面,渣中 B₂O,含 量增加, B₂O₃ 可形成 [BO₄]⁵⁻四面体结构, 增加熔渣 网络结构的复杂度,使黏度增加[12]。本研究渣系所 涉及的反应如式(1)~(3)所示。

$$[AlO_4]^{5-} + XF^- \rightarrow [AlO_x F_{4-x}]^{-1-x}$$
 (1)

$$Al - O - Si + F^{-} \rightarrow Al - F + Si - O -$$
 (2)


$$[BO_3]^{3-} + 2Al - O^- \rightarrow [BO_4]^{5-} + Al - O - Al$$
 (3)

保护渣转折点温度的降低,一方面与以 B,O,代 替 CaF, 时保护渣熔化温度的降低有关; 另一方面, 与保护渣析晶性能的变化密切相关,该部分将结合

后续结晶性能变化进行分析。

2.3 助熔剂含量对高铝钢保护渣凝固结晶特性的 影响

图 3a、b 为 S1 渣在转折点温度及充分析晶(5 Pa·s) 时淬冷渣样的扫描电镜形貌,相关物相的 EDS 分析 结果如表 4 所示, XRD 分析结果如图 3c 所示。分 析表明, 当 w(B₂O₃) =5%, w(CaF₂) =23% 时, 在转折 点温度(1260 ℃)下渣中便析出了大量鳞片状的 P1 相, 当温度降至 1 207 ℃ 时(黏度为 5 Pa·s), P1 相的 析出量明显增多,尺寸较大。经 EDS 和 XRD 分析, 确定 P1 相为 Ca₁₂Al₁₄O₃₂F₂, M 相为残余液相。

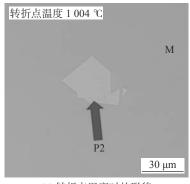
200 μm

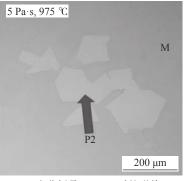
-S1 渣 5 Pa·s (1 207 ℃) 1200 Ca₁₂Al₁₄O₃₂F₂ 1000 800 600 400 200 20 30 2θ/(°) (c) XRD 谱

5 Pa·s, 1 207 ℃

(b) 充分析晶 (5 Pa·s) 时的形貌

P1: Ca₁,Al₁₄O₃,F₂; M: 液相


图 3 S1 渣在不同温度下淬冷渣样的扫描电镜形貌以及充分析晶 (5 Pa·s) 下淬冷渣样的 XRD 图谱 Fig. 3 SEM images of S1 mold flux quenched at different temperatures, and XRD patterns of S1 mold flux quenched at full crystallization (5 Pa·s)


表 4 S1 渣在不同温度下淬冷渣样相关物相的能谱分析 Table 4 EDS analysis of S1 mold flux quenched at different temperatures

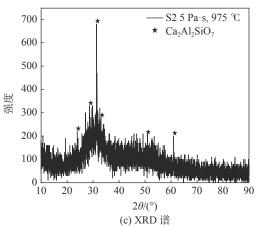
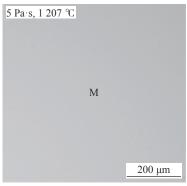

淬冷温度/℃	<i>₩</i> m + □	摩尔分数/%						
	物相	Ca	Al	Si	Na	F	О	
1.260	P1	20.53	27.05			5.22	47.20	
1 260	M	25.20	3.83	5.25	2.56	18.25	49.07	
1 207	P1	19.73	26.67			4.53	49.07	
1 207	M	21.59	8.01	4.76	2.45	18.76	44.43	

图 4a、b 为 S2 渣在转折点温度及充分析晶 (5 Pa·s)时淬冷渣样的扫描电镜形貌,相关物相的 EDS 分析结果如表 5 所示, XRD 分析结果如图 4c 所示。分析表明, 当 $w(B_2O_3) = 10\%$, $w(CaF_2) = 18\%$ 时, 在转折点温度(1004 ℃)下渣中仅析出了少量不 规则的块状 P2 相, 当温度降至 975 ℃ 时(黏度为 5 Pa·s), P2 相的析出量明显增多且尺寸较大。经 EDS 和 XRD 分析, 确定 P2 相为 2CaO·Al₂O₃·SiO₂, M 相为残余液相。

图 5a、b为 S3 渣在转折点温度及充分析晶 (5 Pa·s)时淬冷渣样的扫描电镜形貌,相关物相的 EDS 分析结果如表 6 所示, XRD 分析结果如图 5c 所示。分析表明, 当 w(B₂O₃) =15%, w(CaF₂) =13% 时,在转折点温度和黏度 5 Pa·s 时,保护渣均保持单 一液相,无物相析出。

(a) 转折点温度时的形貌

(b) 充分析晶 (5 Pa·s) 时的形貌


P2: 2CaO·Al₂O₃·SiO₂; M: 液相

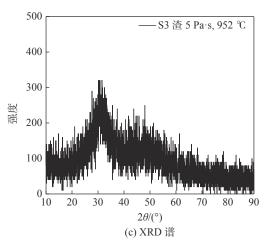

图 4 S2 渣在不同温度下淬冷渣样的扫描电镜形貌以及在充分析晶 (5 Pa·s) 下淬冷渣样的 XRD 分析图谱 Fig. 4 SEM images of S2 mold flux quenched at different temperatures, and XRD patterns of S2 mold flux quenched at full crytallization (5 Pa·s)

表 5 S2 渣在不同温度下淬冷渣样相关物相的能谱分析 Table 5 EDS analysis of S2 mold flux quenched at different temperatures

************************************	<i>₩</i>	摩尔分数/%						
淬冷温度/℃	物相 -	Ca	Al	Si	Na	F	О	
1.004	P2	17.46	22.04	6.98			53.51	
1 004	M	19.25	13.74	3.70	2.51	9.72	51.08	
075	P2	18.49	23.28	7.08			51.14	
975	M	19.69	13.69	3.64	2.09	10.42	50.49	

(a) 转折点温度时的形貌 (b) 充分析晶 (5 Pa·s) 时的形貌

图 5 S3 渣在不同温度下淬冷渣样的扫描电镜图片以及在充分析晶 (5 Pa·s) 下淬冷渣样的 XRD 分析图谱 Fig. 5 SEM images of S3 mold flux quenched at different temperatures,and XRD patterns of S3 mold flux quenched at full crytallization (5 Pa·s)

表 6 S3 渣在不同温度下淬冷渣样相关物相的能谱分析 Table 6 EDS analysis of S3 mold flux quenched at different temperatures

淬冷温度/℃	物相	摩尔分数/%						
伴传通及/ C		Ca	Al	Si	Na	F	О	
975	M	17.51	14.23	3.16	3.26	6.74	55.10	
952	M	17.93	14.43	3.30	2.81	7.02	54.51	

综合上述结果, 随着 B_2O_3 取代 CaF_2 质量分数的增加, 保护渣的析晶能力逐渐减弱, 转折点温度和黏度 5 $Pa \cdot s$ 时析晶物相的变化规律均为: $Ca_{12}Al_{14}O_{32}F_2 \rightarrow 2CaO \cdot Al_2O_3 \cdot SiO_2 \rightarrow \dot{\Psi}$ 一液相。

结合析晶物相变化规律,可进一步分析保护渣转折点温度的变化规律。如图 6 所示,等质量分数的 B₂O₃ 代替 CaF₂ 条件下保护渣在黏度及转折点温度变化的原因各有不同, S1 渣黏度的变化主要由Ca₁₂Al₁₄O₃₂F₂ 的析出所致, S2 渣黏度的变化主要由2CaO·Al₂O₃·SiO₂ 的析出所致, S3 渣渣中无结晶物相析出,黏度变化与温度降低所致的熔渣聚合度升高有关。随着 B₂O₃ 代替 CaF₂ 质量分数的增加,保护渣的析晶能力明显减弱,从而导致保护渣的转折点温度降低。结合黏度变化规律可知,随着渣中CaF₂ 含量降低和 B₂O₃ 含量增加,保护渣黏度有所升高,离子扩散收到抑制,进而导致结晶趋势减弱;此外, B₂O₃ 含量增加可大幅度降低保护渣的熔化温度,在相同温度下,熔渣过热度提高,晶格重组困难,从而使得结晶相的析出受到抑制。

3 结论

在新型高铝钢用 $CaO-Al_2O_3$ 基连铸保护渣中,利用 B_2O_3 替代 CaF_2 ,当 CaF_2 质量分数由 23%降至 13%、 B_2O_3 质量分数由 5%增加至 15%时:

- 1) 保护渣的熔化温度由 1 200 ℃ 降至 956 ℃, 等质量 CaF₂ 在 CaO-Al₂O₃ 基保护渣中降低熔点的 作用明显弱于 B₂O₃。
- 2) 保护渣的黏度逐渐提高, 1300 ℃ 的黏度值从 0.076 Pa·s 提高至 0.118 Pa·s。其原因为, 随着 B_2O_3 替代 CaF_2 质量分数的提高, F 对熔渣网络结构的解聚程度降低; 而且, 随着 B_2O_3 含量的增加, 渣中可形成 $[BO_4]$ 四面体网络结构, 增加网络复杂程度,

进而使得黏度提高。

3) 保护渣的析晶性能受到抑制, 玻璃性提高。 其原因为, 随着 CaF_2 含量降低和 B_2O_3 含量增加, 保护渣的黏度有所升高, 离子扩散受到抑制, 进而导致结晶趋势减弱; 而且, B_2O_3 含量增加可大幅度降低保护渣的熔化温度, 在相同温度下, 熔渣过热度提高, 晶格重组困难, 从而使得结晶物相的析出受到抑制。随着 B_2O_3 取代 CaF_2 质量分数的增加, 保护渣析晶物相的变化规律为: $Ca_{12}Al_{14}O_{32}F_2 \rightarrow 2CaO\cdot Al_2O_3\cdot SiO_2 \rightarrow$ 单一液相。当 B_2O_3 取代 CaF_2 质量分数为 10% 时, 保护渣的析晶性能得到有效抑制, 可有效降低粘结报警频率, 满足高铝钢种的浇铸需求。

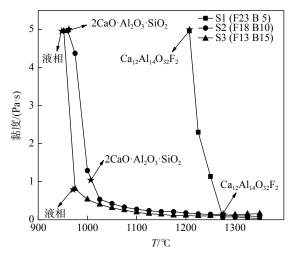


图 6 不同 B₂O₃ 代替 CaF₂ 质量分数条件下保护渣结晶物 相的析出情况

Fig. 6 Crystallization of different phases for mold flux with different contents of B₂O₃ as replacement for CaF₂

致谢

感谢国家自然科学基金项目(U1908224,51904064,51874082)和中国博士后科学基金项目(2020T130084,2019M661114)对本研究的大力支持。

参考文献

- [1] Ma Mingtu, Zhang Yisheng, Song Leifeng, *et al.* Research progress of hot stamping forming of ultra-high strength steel[J]. New Material Industry, 2015, (9): 61–67.
 - (马鸣图, 张宜生, 宋雷峰, 等. 超高强度钢热冲压成型研究进展[J]. 新材料产业, 2015, (9): 61-67.)
- [2] Xu Jinzhong, Han Yihua, Bi Yanxue, *et al.* Study on the dissolution behavior of Al₂O₃ by CaO-Al₂O₃ based continuous casting mold flux[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 127–131.

 (许进忠, 韩毅华, 毕延雪, 等. CaO-Al₂O₃基连铸保护渣对Al₂O₃溶解行为的研究[J]. 钢铁钒钛, 2018, 39(2): 127–131.)
- [3] Wang Huan, Tang Ping, Wen Guanghua, *et al.* Research on non-reactive continuous casting mold flux for high aluminum steel[J]. Iron Steel Vanadium Titanium, 2010, 31(3); 20–24. (王欢, 唐萍, 文光华, 等. 高铝钢非反应性连铸保护渣的研究[J]. 钢铁钒钛, 2010, 31(3); 20–24.)

- [4] Yu Xiong, Wen Guanghua, Tang Ping, *et al.* The effect of F on the physical and chemical properties of high-aluminum steel continuous casting mold flux[J]. Chinese Journal of Process Engineering, 2010, 10(6): 1153–1157. (于雄,文光华, 唐萍,等. F对高铝钢连铸保护渣理化性能的影响[J]. 过程工程学报, 2010, 10(6): 1153–1157.)
- [5] Yang J, Zhang J, Ostrovski O, *et al.* Effects of fluorine on solidification, viscosity, structure, and heat transfer of CaO-Al₂O₃-based mold fluxes[J]. Metall Mater Trans. B, 2019, 50: 1766–1772.
- [6] Qi J, Liu C J, Jiang M F. Viscosity-structure-crystallization of the Ce₂O₃-bearing calcium-aluminate-based melts with different contents of B₂O₃[J]. ISIJ International, 2018, 58(1): 186–193.
- [7] Zhang L, Wang W, Xie S, *et al.* Effect of basicity and B₂O₃ on the viscosity and structure of fluorine-free mold flux[J]. Journal of Non-Crystalline Solids, 2017, 460: 113–118.
- [8] Wang Xingjuan, Wu Binbin, Zhu Liguang, *et al.* Research on rheological characteristics of fluorine-free continuous casting mold fluxes[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 135–139.

 (王杏娟, 武宾宾, 朱立光, 等. 无氟连铸保护渣流变特性的研究[J]. 钢铁钒钛, 2017, 38(4): 135–139.)
- [9] Yan W, Chen W Q, Yang Y D, *et al.* Evaluation of B₂O₃ as replacement for CaF₂ in CaO-Al₂O₃ based mould flux[J]. Ironmaking & Steelmaking, 2016, 43(4): 316–323.
- [10] Zeng Q, Stebbins J F. Fluoride sites in aluminosilicate glasses: high-resolution ¹⁹F NMR results[J]. American Mineralogist, 2000, 85(5-6): 863–867.
- [11] Wang X, Jin H, Zhu L, *et al*. Effect of CaF₂ on the viscosity and microstructure of CaO–SiO₂–Al₂O₃ based continuous casting mold flux[J]. Metals, 2019, 9(8): 871.
- [12] Sun Y Q, Zhang Z T. Structural roles of boron and silicon in the CaO-SiO₂-B₂O₃ glasses using FTIR, Raman, and NMR spectroscopy[J]. Metallurgical and Materials Transactions B, 2015, 46(4): 1549–1554.

编辑 杨冬梅

美国与日本东邦钛合作探索新的钛冶炼提取方法

(8月13日消息)据日本东邦钛报道,美国 Universal Achemetal Titanium(UAT)与东邦钛公司(Toho Titanium)合作,通过新的工艺技术方法,避免了在钛矿提炼反应时的碳元素加入,来解决工艺制取过程中温室气体二氧化碳的排出,探索出一种新的钛冶炼提取方法,即将带来钛原料制取技术的新突破,有望实现商业化应用。

克劳尔法(Kroll)钛金属提取法,是将粉末状钛矿(TiO₂)置于熔炼炉中,注入氯气和还原剂煤焦,加热到 $1\,000\,$ °C 左右实现化学反应,来制取液态四氯化钛,反应产生大量的二氧化碳气体。这种工艺方法生产一吨金属钛会产生大约 $10\,t$ 二氧碳气体,在镁还原蒸馏工序,将消耗掉大量的电能,生产一吨海绵钛大约需要消耗 $2\,$ ~3 万度电,并且蒸馏还原过程中钛金属中的杂质去除难度也非同一般,这就造成了海绵钛生产的高污染、高能耗、高成本等诸多弊端。

UAT 公司研究的钛冶炼提取新工艺技术方法,是在粉末状钛矿(TiO_2)中添加氟化钙和铝,混合物在冶炼炉中发生剧烈的铝热还原反应,燃烧反应后的氧化铝和氟化钙易于分离,再采用电解法将金属钛溶入电解液中,之后在电极表面形成固态的树枝状钛金属沉积物,经水洗或真空分离得到金属钛。此方法制取的钛金属杂质含量低,比克劳尔法的去除杂质效果好。这个工艺技术流程中没有碳元素的参与,解决了生产过程中二氧化碳的大量排放,工艺方法更加环保,此工艺流程的耗电量也比克劳尔法降低 70% 左右。生产中电解沉积制取的钛金属,可真接用于制取钛粉或用作生产纤维烧结多孔薄板等。新的工艺技术有效地解决了钛金属原料制取中的高能耗、高污染,并能获得纯度更高、成本更低的钛金属原材料。

在实验室研究的基础上,2021年日本东邦钛公司为这项新的提取技术建设了中试车间,包括不同型号的大小电解沉积槽等,并在试生产试验中优化改进了电解提纯工艺,成功批量化生产出比克劳尔法纯度更高、氧含量更低的钛金属,这为新技术的商业化应用迈出成功的第一步。