

攀西某钒钛磁铁矿选矿试验研究

李金林 李韦韦 祝勇涛 吴雪红

(攀钢集团矿业有限公司设计研究院, 钒钛资源综合利用国家重点实验室, 四川 攀枝花 617063)

摘 要: 以攀西某低品位钒钛磁铁矿为研究对象 针对其中的钛磁铁矿与钛铁矿开展选矿试验研究。通过"预先抛尾+两段阶磨阶选"的工艺回收其中的钛磁铁矿 "最终可获得产率 19.78% "TFe 品位 55.34% "TFe 回收率 51.27% 的铁精矿。选铁尾矿中含有大量钛铁矿 通过两段除铁强磁流程可将 TiO_2 品位由 9.38%提升至 21.58%; 采用浮选流程进一步提升 TiO_2 品位 通过"浮硫—脱泥——粗三精"的流程 "最终可获得相对于选铁尾矿产率 9.53% " TiO_2 品位 47.45% " TiO_3 " 回收率 47.87%的合格钛精矿。

关键词: 钒钛磁铁矿; 阶磨阶选; 钛铁矿; 钛磁铁矿

中图分类号: TF041 ,TD92 文献标志码: A 文章编号: 1004-7638(2020)06-0066-08

DOI: 10.7513/j.issn.1004-7638.2020.06.013 开放科学(资源服务)标识码(OSID):

听语音 聊科研

Beneficiation of a Vanadium-titanium Magnetite in Panxi

Li Jinlin Li Weiwei Zhu Yongtao ,Wu Xuehong

(Design and Research Institute of Mining Co. ,Ltd. ,Pangang Group State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization ,Panzhihua 617063 Sichuan ,China)

Abstract: Taking a vanadium-titanium magnetite in Panxi as the research object a beneficiation test was carried out for the titanium magnetite and ilmenite. The titanium magnetite was recovered by the process of pre-throwing tailings followed by two-stage grinding and magnetic separation and the iron concentrate with a yield of 19.78% a TFe grade of 55.34% and a TFe recovery rate of 51.27% can be obtained finally. The tailings of iron beneficiation contain a large amount of ilmenite and the TiO₂ grade can be increased from 9.38% to 21.58% by two stages of iron removal and strong magnetic processes. The flotation process was used to further improve the TiO₂ grade. Through the process of floating sulfur-desliming-one rough and three concentration qualified titanium concentrate with a yield of 9.53% a TiO₂ grade of 47.45% and a TiO₂ recovery rate of 47.87% can be obtained.

Key words: vanadium-titanium magnetite multi-stage grinding-magnetic separation ilmenite titanomagnetite

0 引言

钒钛磁铁矿是一种含有铁、钛、钒等多种有用 金属元素的黑色金属矿种,它不仅是铁的重要来源,而且伴生有多种微量元素,具有很高的综合利 用价值^[1-2]。我国钒钛磁铁矿分布广泛,储量与开采量位居全国铁矿第三位,我国的钒钛磁铁矿主要分布于攀枝花一西昌地区、河北承德地区,尤其是攀西地区蕴含着丰富的钒钛磁铁矿资源^[3]。我国选矿科研工作者针对钒钛磁铁矿做了大量研究工

收稿日期: 2019-12-30

作^[4-5] ,一般采用弱磁选回收钒钛磁铁矿中的钛磁铁矿^[6] 采用"强磁选+浮选"的工艺回收其中的钛铁矿^[7] 而微量元素钒、铬、钪通常以类质同象的形式存在于钛磁铁矿中^[8] , 钴、镍通常存在于硫化矿中 ,一般在钛铁矿浮选之前通过浮硫获得硫钴精矿^[9]。

笔者研究矿样为 TFe 品位 21.35% 的攀枝花某 钒钛磁铁矿 属于低品位型钒钛磁铁矿。通过对该 矿石的研究 查明了矿石中的有用矿物 并采用了合理的工艺流程获得了合格的铁精矿与钛精矿 ,对攀 西地区表外矿的利用以及低品位钒钛磁铁矿选矿具有借鉴意义。

1 工艺矿物学研究

试验矿样为攀西某钒钛磁铁矿 将矿石破碎至-3 mm 以下 混匀缩分以后进行原矿工艺矿物学研究。由 化学多元素分析(表 1) 可知 原矿 TFe 品位为 21.35%,相对较低 其中磁性铁含量占 TFe50%以上 ,TiO₂ 品位 9.89% 原矿中硅、铝含量较高 属于酸性矿石。矿石中有用矿物主要为钛磁铁矿与钛铁矿 见表 2。

表 1 原矿化学多元素分析

Table 1 Main chemical compositions of the raw ore	9
---	---

TFe	FeO	$\mathrm{Fe_2O_3}$	MFe	${ m TiO}_2$	S
21.35	16.75	12.12	10.75	9.89	0.53
P	CaO	MgO	Al_2O_3	SiO_2	V_2O_5
0.041	8.56	7.40	7.70	31.17	0.172

表 2 原矿矿物含量分析

Table 2 Mineral compositions of the raw ore %

钛磁铁矿	钛铁矿	硫化物	脉石
23.36	12.53	1.24	62.87

全粒级筛析结果(表 3)表明原矿粒度较粗,各粒级 TFe 品位均在 21%左右, TiO_2 品位呈现中间高两端低的情况,原矿 $74~\mu m$ 以下含量为 12.19%。

由图 1 可知,钛磁铁矿与钛铁矿呈稀疏浸染状构造,紧密共生,呈晚期交代充填于脉石缝隙,钛磁铁矿与钛铁矿接触界面平直,一般呈自形晶。

表 3 原矿全粒级筛析结果 Table 3 Size distribution of the raw ore

粒级/mm 产率/%		/mm 产率/% ————————————————————————————————————		回收	率/%
和级/mm	广举/%	TFe	TiO ₂	TFe	${ m TiO_2}$
+0.85	21.05	21.94	8.83	21.63	18.79
-0.85~+0.425	24.37	21.27	8.17	24.28	20.13
-0.425~+0.25	16.01	20.76	9.80	15.57	15.87
-0.25~+0.18	8.66	20.86	11.18	8.46	9.79
$-0.18 \sim +0.15$	6.65	20.76	11.84	6.47	7.96
-0.15~+0.125	4.43	20.80	12.24	4.32	5.48
-0.125~+0.09	4.73	20.91	12.08	4.63	5.78
-0.09~+0.074	1.91	20.33	11.70	1.82	2.26
-0.074	12.19	22.47	11.31	12.82	13.94
合计	100.00	21.35	9.89	100	100.00

图 1 钛磁铁矿与钛铁矿紧密共生 Fig.1 Symbiotic titanium magnetite and ilmenite

图 2、3 表明该矿石具有攀枝花钛磁铁矿的典型特征,钛磁铁矿内部除了有了大量微米级的尖晶石外,还有钛铁矿片晶,这些杂质矿物难以用选矿方法除去,会影响铁精矿的品位,同时在磁选钛磁铁矿的过程中会带走一部分钛。

由图 4 可知 部分钛铁矿内部同样存在杂质 ,也会影响钛精矿的品位。

2 试验方案及主要设备

2.1 试验方案

试验采用先选铁,再在选铁尾矿中选钛的流程。由于原矿 TFe 品位较低,为了降低磨矿成本

同时防止误磨,因此在选铁之前先进行抛尾。工艺矿物学研究表明各粒级 TFe 品位相差不大,为了防止钛磁铁矿过磨,遵从能收早收的原则,选铁流程采用阶段磨矿阶段选别的流程;选铁尾矿中的钛铁矿采用"强磁+浮选"流程回收,尾矿中不仅含有钛铁矿,还含有一定钛磁铁矿,这部分钛磁铁矿不仅会堵塞高梯度磁选机磁介质,而且在钛铁矿的浮选过程中还会消耗药剂,因此在强磁回收钛铁矿之前需采用弱磁选除去其中的钛磁铁矿。

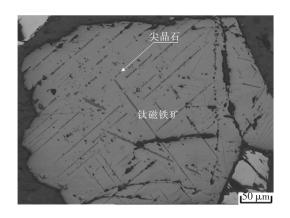


图 2 钛磁铁矿内部的尖晶石 Fig.2 Spinel inside titanium magnetite

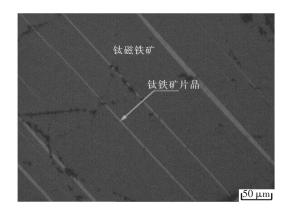


图 3 钛磁铁矿内部的钛铁矿片晶 Fig.3 Ilmenite flakes inside titanium magnetite

2.2 主要试验设备

试验过程中主要用到的设备有 250 mm×360 mm 锤式破碎机,XMQ350×160 锥形球磨机,XCRS400×240 电磁湿法鼓形磁选机,SLon-100 立环脉动强磁选机,SLon-750 立环脉动强磁选机,0.5、1 L 充气式单槽浮选机,NiKOn50iPOL 显微镜。

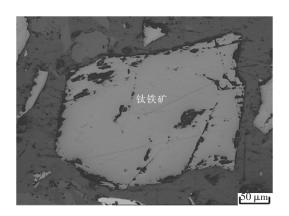


图 4 钛铁矿内部杂质 Fig.4 Internal impurities of ilmenite

3 试验结果与讨论

3.1 选铁试验

3.1.1 抛尾试验

由于原矿 TFe 品位仅为 21.35% 相对较低 ,为了降低后续磨矿能耗 ,因此采用弱磁抛尾提高铁品位 ,采用弱磁选机对-3 mm 的原矿进行抛尾场强条件试验 ,试验结果如图 5 所示。

图 5 抛尾场强条件试验 Fig.5 Magnetic intensity condition test of discarding tailings

由图 5 可看出 ,TFe 品位均能提高到 27%以上 ,TFe 回收率在 78%以上。随着磁场强度增加 ,精矿TFe 品位逐渐下降 ,但幅度均较小 ,综合考虑 TFe 品位和回收率 ,选择抛尾磁场强度为 0.3 T ,在此磁场强度条件下进行抛尾生产试验 ,试验结果如表 4 所示。由表 4 可知 ,抛尾磁场强度为 0.3 T 时 ,可获得产率为 59.57% ,TFe 品位为 27.88% ,TFe 回收率为 77.79%的抛尾精矿。

表 4 抛尾生产试验 Table 4 Industrial test of discarding tailings

场强/ 产品	产率/	品位	፲/%	回收	率/%	
T	<i>—</i> пп	%	TFe	${ m TiO}_2$	TFe	${ m TiO}_2$
	精矿	59.57	27.88	10.77	77.79	64.87
0.3	尾矿	40.43	11.73	8.59	22.21	35.13
	原矿	100	21.35	9.89	100	100

3.1.2 一段磨选试验

将抛尾精矿进行一段磨矿磁选条件试验,探索一段磨矿磁选的最佳细度与磁场强度。首先进行磨矿细度条件试验 试验场强为 0.23 T,试验结果如图 6 所示。

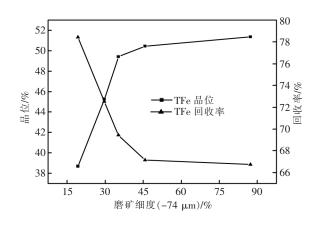


图 6 一段磨矿细度条件试验

Fig.6 Primary grinding fineness condition test

由图 6 可知 随着抛尾精矿 $-74~\mu m$ 含量增加 ,精矿 TFe 品位逐渐升高 ,TFe 回收率逐渐下降 ,当 $-74~\mu m$ 含量达到 35.20% 以上时 ,精矿 TFe 品位提高不再明显 ,而 TFe 回收率下降至 70% 以下 ,因此选择一段抛尾精矿最佳磨矿细度为 $-74~\mu m$ 含量 35.20% ,在此磨矿细度下进行一段磁选场强条件试验 ,结果如图 7~m示。

由图 7 可知 随着磁场强度增加 ,TFe 品位逐渐下降 ,TFe 回收率逐渐升高 ,当磁场强度达到 0.26 T时 精矿 TFe 品位下降比较明显 ,而 TFe 回收率升高不再明显 ,因此选择一段磨选磁场强度为 0.26 T。在最佳磨矿细度-74 μm 含量 35.20%和磁场强度 0.26 T 条件下进行生产试验 ,试验结果如表 5 所示。

由表 5 可知 在最佳条件下,一段磨选可获得作业产率 40.55%,TFe 品位 49.36%,TFe 回收率 77.79%的精矿。

3.1.3 二段磨选试验

一段磨选获得的精矿 TFe 品位仅为 49.36% 需

进一步提高 TFe 品位,因此将一段磨选获得的精矿进行二段磨矿磁选试验。二段磨矿细度条件试验设定磁场强度为 0.23 T 结果如图 8 所示。

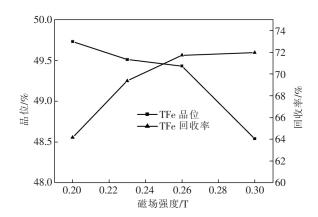


图 7 一段磁选场强条件试验

Fig.7 Primary magnetic intensity condition test

表 5 一段磨选生产试验
Table 5 Industrial test of primary grinding-magnetic separation

场强/	프品		品位	7/%	回收	率/%
T	厂吅	%	TFe	${ m TiO}_2$	TFe	${ m TiO}_2$
	精矿	40.55	49.36	11.83	77.79	44.54
0.26	尾矿	59.45	13.23	10.05	22.21	55.46
	给矿	100	27.88	10.77	100	100

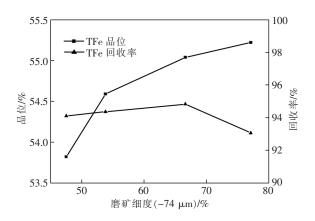


图 8 二段磨矿细度条件试验

Fig.8 Secondary grinding fineness condition test

由图 8 可知 随着磨矿细度-74 μm 含量增加 , 二段弱磁精矿 TFe 品位逐渐降低 ,TFe 回收率呈下 降趋势 ,当-74 μm 含量达 66.60%时 精矿 TFe 品位 能提高至 55%以上 ,TFe 回收率 94%以上 ,因此选择 二段磨矿细度为-74 μm 含量 66.60% ,在此磨矿细 度条件下进行二段磁选场强条件试验 ,结果如图 9 所示。

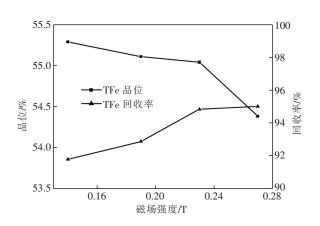


图 9 二段磁选场强条件试验

Fig.9 Secondary magnetic intensity condition test

由图 9 可知 随着磁场强度增加 精矿 TFe 品位逐渐下降 ,TFe 回收率逐渐升高。在磁场强度 $0.14 \sim 0.23$ T 时 精矿 TFe 品位均能达到 55%以上 因此选择二段磁选磁场强度为 0.23 T。根据二段最佳条件试验结果 在-74 μm 含量 66.60%以及磁场强度0.23 T 条件下进行生产试验 结果如表 6 所示。

表 6 二段磨选生产试验 Table 6 Industrial test of secondary grinding-magnetic separation

场强/ 产品		产率/	品位	፲/%	回收	率/%
T	<i>—</i> пп	%	TFe	TiO ₂	TFe	${\rm TiO_2}$
	精矿	85.15	54.89	11.93	94.69	85.87
0.23	尾矿	14.85	17.65	11.26	5.31	14.13
	给矿	100	49.36	11.83	100	100

由表 6 可知 在最佳磨矿细度和磁场强度条件下 二段磨选可获得作业产率 85.15% ,TFe 品位 54.89% ,TFe 回收率 94.69%的精矿。为了继续提高精矿中 TFe 的品位 将二段磨选获得的精矿进行精选 ,试验场强为 0.19 T ,试验结果见表 7。

表 7 精选试验 Table 7 Concentration test

场强/ 产品		产率/	品位	7/%	回收	率/%
T	厂吅	%	TFe	${ m TiO}_2$	TFe	${\rm TiO_2}$
	精矿	96.17	55.34	11.95	96.96	96.33
0.19	尾矿	3.83	43.60	11.43	3.04	3.67
	给矿	100	54.89	11.93	100	100

由表 7 可知 ,两段磨选获得的精矿经过精选后 ,可获得作业产率 96.17% ,TFe 品位 55.34% ,TFe 回 收率 96.96% 的精矿。相对于原矿产率 59.57% × 40.55%×85.15%×96.17% = 19.78% ,相对于原矿

回收率 19.78%×55.34%÷21.35%=51.27%。

3.2 选钛试验

由于原矿 TiO₂ 品位为 9.89%,选铁带走约 24%钛,在抛尾尾矿与其它尾矿中含有大部分钛,将所有尾矿混合后可获得 TFe 品位 12.97%,TiO₂ 品位为9.38%的抛尾尾矿,因此需要对选铁尾矿进行钛回收。钛铁矿的回收采用"强磁+浮选"工艺,为避免钛磁铁矿对强磁介质和浮选的影响,因此在每段强磁选之前需进行除铁试验。

3.2.1 一段强磁试验

由于抛尾尾矿粒度较粗,因此先将抛尾尾矿磨矿至- $74~\mu m$ 占 35%左右,将磨矿后的抛尾尾矿与其它尾矿混合后进行一段除铁试验,试验磁场强度为 0.3~T 结果见表 8。

表 8 选铁尾矿一段除铁试验结果
Table 8 Results of the primary iron removal test

	~~~ 프品	产率/	品位	፲/%	回收	率/%
T	)— пп	%	TFe	TiO ₂	TFe	${\rm TiO_2}$
	次铁精矿	1.38	25.65	12.28	2.73	1.81
0.3	尾矿	98.62	12.79	9.34	97.27	98.19
	给矿	100	12.97	9.38	100	100

由表 8 可以看出 选铁尾矿经过一段弱磁除铁 能除掉产率为 1.38% ,TFe 品位 25.65%的次铁精矿 ,这部分次铁精矿主要为钛磁铁矿 ,此时得到除铁尾矿产率为 98.62% ,TiO₂ 品位 9.34% ,TiO₂ 回收率 98.19%。将除铁尾矿进行一段强磁条件试验 ,采用 SLon-100 高梯度磁选机 脉动为 300 次/min 结果如图 10 所示。

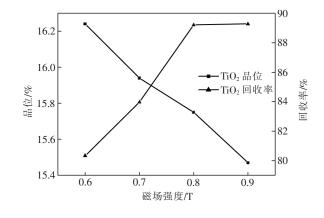



图 10 一段强磁条件试验 Fig.10 Primary strong magnetic condition test

由图 10 可以看出 随着磁场强度增强 ,TiO₂ 品位呈下降趋势 ,回收率呈上升趋势 ,在试验磁场强度

范围内 TiO₂ 品位均能达到 15%以上。当磁场强度达到 0.8 T以上时 ,TiO₂ 回收率上升不再明显 ,因此选钛一段强磁最佳磁场强度为 0.8 T ,在此磁场强度下 ,采用 Slon-750 高梯度磁选机进行生产试验。设定脉动为 300 次/min ,冲程为 19 mm ,转环转速 3 r/min ,激磁电流 950 A 结果如表 9 所示。

表 9 一段强磁生产试验结果
Table 9 Results of the primary strong magnetic industrial test

 场强/ 产品		产率/	品位	፲/%	回收	率/%
T	<i>—</i> пп	%	TFe	${ m TiO}_2$	TFe	${\rm TiO_2}$
	精矿	52.09	17.45	15.77	71.06	87.94
0.8	尾矿	47.91	7.72	2.35	28.94	12.06
	给矿	100	12.79	9.34	100	100

根据表 9 可知 ,选铁尾矿通过一段强磁选 ,可获得产率 52.09% , $TiO_2$  品位 15.77% , $TiO_2$  回收率 87.94%的精矿。

### 3.2.2 二段强磁试验

为进一步提高  $TiO_2$  入浮品位 ,进行二段除铁强磁试验 ,将强磁精矿磨矿至  $-74~\mu m$  占 60% 左右 ,进行二段除铁试验 ,除铁磁场强度为 0.3~T ,结果见表 10 。

表 10 二段除铁试验结果 Table 10 Results of the secondary iron removal test

场强/ 产品	产率/	品位	7/%	回收?	率/%	
T	厂口口	%	TFe	TiO ₂	TFe	${ m TiO}_2$
	次铁精矿	1.09	25.99	15.94	1.62	1.10
0.3	尾矿	98.91	17.36	15.77	98.38	98.90
	给矿	100	17.45	15.77	100	100

一段强磁精矿磨矿后,通过二段弱磁能除去产率为 1.09% 的次铁精矿,同时获得产率为 98.91%,  $TiO_2$  品位 15.77%,  $TiO_2$  回收率 98.90%的除铁尾矿。将获得的除铁尾矿进行二段磁场强度条件试验,试验采用 Slon-100 高梯度磁选机,脉动为 300 次/min 结果如图 11 所示。

由图 11 可以看出 随着磁场强度增强  $TiO_2$  品位呈下降趋势  $TiO_2$  回收率呈上升趋势 在试验磁场强度范围内  $TiO_2$  品位均能达到 21%以上。当磁场强度达到 0.7 T 以上时  $TiO_2$  回收率上升不再明显 ,因此选钛一段强磁最佳磁场强度为 0.7 T 在此磁场强度下 采用  $TiO_2$  高梯度磁选机进行生产试验。设定脉动为 300 次/min ,冲程为 19 mm ,转环转速 3 r/min 激磁电流 800 A 结果如表 11 所示。

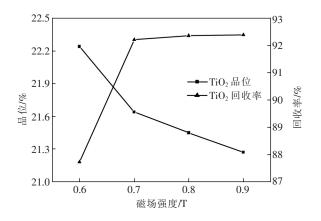



图 11 二段强磁条件试验

Fig.11 Secondary strong magnetic condition test

表 11 二段强磁生产试验结果
Table 11 Results of the secondary strong
magnetic industrial test

		产率/	品位	፲/%	回收	率/%
T	<i>)</i> —пп	%	TFe	${ m TiO}_2$	TFe	${\rm TiO_2}$
	精矿	67.41	21.27	21.58	82.60	92.25
0.7	尾矿	32.59	9.27	3.75	17.40	7.75
	给矿	100	17.36	15.77	100	100

由表 11 可知 ,通过两段除铁强磁试验 ,可使入 浮原料  $TiO_2$  品位由 9.38%提升至 21.58% ,此时相对 于选铁尾矿的产率为  $98.62\% \times 52.09\% \times 98.91\% \times 67.41\% = 34.25\%$  ,回 收率为  $34.25\% \times 21.58\% \div 9.38\% = 78.80\%$ 。

#### 3.2.3 浮选试验

两段强磁获得的精矿需采用浮选进一步提升 TiO₂ 品位 浮选原料中的硫化物不仅会影响钛铁矿的浮选 ,也是钛铁矿冶炼过程中有害杂质元素 S 的主要来源 ,因此在钛铁矿浮选之前采用黄药除硫 ,浮选原料中的细泥同样会影响钛铁矿的浮选 ,综合考虑采用 "浮硫+脱泥+浮钛"的流程回收钛铁矿。

硫酸的用量会影响钛铁矿的浮选效果,因此需进行硫酸用量条件试验,试验结果如图 12 所示。由图 12 可以看出,随着硫酸用量增加,获得精矿的TiO₂ 品位逐渐上升,TiO₂ 回收率则逐渐下降,当硫酸用量高于 1 200 g/t 时,TiO₂ 回收率下降明显,因此选择硫酸最佳用量为 1 200 g/t。

在最佳硫酸用量条件下进行捕收剂用量条件试验 ,钛铁矿捕收剂采用 MOH ,同时加入少量的柴油作为辅助捕收剂 ,试验结果如图 13 所示。试验结果表明随着捕收剂用量增加 ,精矿中 TiO₂ 品位逐渐下

降,TiO2回收率呈上升趋势,但捕收剂用量超过 2 000 g/t 时 精矿中 TiO2 品位下降明显 ,因此选择 捕收剂 MOH 用量为 2 000 g/t。

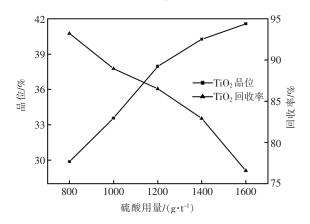



图 12 硫酸用量条件试验

Sulfuric acid dosage condition test

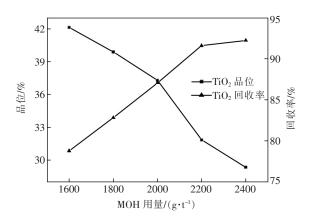



图 13 捕收剂用量条件试验 Fig.13 Collector dosage condition test

在最佳调整剂和捕收剂用量下进行浮选试验, 浮选流程采用一次粗选三次精选流程,精选过程中 加入少量硫酸作为调整剂,试验流程如图 14 所示, 结果见表 12。

选铁尾矿经过浮硫—脱泥——粗三精选钛流程 能得到作业产率为 27.83% ,TiO₂ 品位 47.11% ,TiO₂

TiO₂

47.45

TFe 33.32

回收率60.76%的钛精矿;相对于选铁尾矿的产率与 回收率分别为 9.53%、47.87%。

## 产品质量检测

对获得的铁精矿和钛精矿分别进行化学多元素 分析,结果见表 13、14。铁精矿中 TFe 品位为 55.34% ,大部分为磁性铁 ,铁精矿中杂质硅、铝、钙、 镁含量较低,有害元素磷、砷含量较低,硫含量相对 较高,但符合冶炼要求。钛精矿中 TiO, 品位为 47.45% ,有害杂质铬、锰、磷、硫符合冶炼要求。

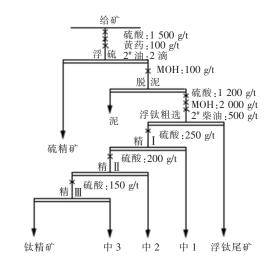



图 14 浮选试验流程 Fig.14 Flotation test flow chart

表 12 浮选试验结果 Table 12 Results of flotation

%

%

 产品	产率	TiO ₂ 品位	TiO ₂ 回收率		
 钛精矿	27.83	47.11	60.76		
S精	2.47	8.17	0.93		
泥	1.90	14.86	1.31		
中1	9.43	25.67	11.22		
中 2	5.30	31.49	7.73		
中 3	3.43	37.66	5.99		
尾矿	49.63	5.24	12.05		
原矿	100.00	21.58	100.00		

表 13 铁精矿化学多元素分析结果

Table 13 Chemical compositions of iron concentrate %

TFe	FeO	$\mathrm{Fe_2O_3}$	MFe	${\rm TiO_2}$	P	$\mathrm{SiO}_2$	$Al_2O_3$	CaO	MgO	S	As
55.34	31.05	44.61	52.50	11.46	0.008	3.08	3.76	1.28	1.90	0.737	< 0.01

表 14 钛精矿化学多元素分析结果

Table 14 Chemical compositions of titanium concentrate

S	$Cr_2O_3$	MnO	$Al_2O_3$	CaO	MgO	$\mathrm{SiO}_2$	P
0.033	0.009	0.77	0.39	1.14	4.62	2.28	0.047

## 5 结论

- 1) 原矿 TFe 品位较低 ,仅为 21.35% ,磁性铁为 10.75% ,原矿中  $TiO_2$  品位为 9.89%。矿石中有用矿物主要为钛磁铁矿与钛铁矿 ,部分钛磁铁矿与钛铁矿内部存在杂质。
- 2) 根据工艺矿物学研究结果,采用阶磨阶选工艺回收矿石中的铁、钛,钛磁铁矿的回收采用两段磨矿磁选工艺,钛铁矿的回收采用"两段除铁+强磁+浮选"工艺。
- 3) 原矿经抛尾后 采用 "弱磁抛尾+两段阶磨阶选+精选选铁" 流程 ,可获得产率 19.78% ,TFe 品位55.34% ,TFe 回收率 51.27%的合格铁精矿。
- 4) 选铁尾矿中含有一定的钛 ,通过采用 "强磁+浮选" 的工艺回收其中的钛 ,两段除铁强磁可将 TiO₂ 的入浮品位由 9.38%提升至 21.58% ,强磁精矿脱硫、脱泥后 ,采用一次粗选三次精选流程 ,可获得相对于选铁尾矿产率 9.53% ,TiO₂ 品位 47.45% ,TiO₂ 回收率 47.87%的合格钛精矿。

#### 参考文献

- [1] Luo Jinhua. Distribution of main elements of Hongge vanadium titano-magnetite in mineral processing [J]. Multipurpose Utilization of Mineral Resources 2015(3):73-76.
  - (罗金华.红格钒钛磁铁矿主要元素在选矿中的分布[J].矿产综合利用 2015(3):73-76.)
- [2] Zhang Jianting Chen Bi.Occurrence and recycling of main elements in Panxi vanadium-titanium magnetite [J].Conservation and Utilization of Mineral Resources 2008(5):41-44.
  - (张建廷 陈碧.攀西钒钛磁铁矿主要元素赋存状态及回收利用[J].矿产保护与利用 2008(5):41-44.)
- [3] Chen Lulu. Current situation of vanadium-titanium magnetite resource utilization [J]. China Resources Comprehensive Utilization , 2015, 33(10): 37–39.
  - (陈露露.我国钒钛磁铁矿资源利用现状[J].中国资源综合利用 2015 33(10):37-39.)
- [4] Li Liang ,Yang Cheng.Basic study on vanadic titanomagnetite milling in Panzhihua [J].Iron Steel Vanadium Titanium ,2011 ,32 (1):33-37.
  - (李亮 杨成.攀枝花某地钒钛磁铁矿选矿基础试验研究[J].钢铁钒钛 2011 32(1):33-37.)
- [5] Li Qinglu.Study on mineralization of low grade vanadium titanium magnetite in Hami [J].China Resources Comprehensive Utilization 2017 36(10):10-13.
  - (李庆禄.哈密低品位钒钛磁铁矿选矿研究[J].中国资源综合利用 2017 36(10):10-13.)
- [6] Chen Zhengxue.Progress of beneficiation of vanadium-titanium magnetite in China [J].Multipurpose Utilization of Mineral Resources, 1987(4): 35-41.
  - (陈正学.我国钒钛磁铁矿选矿的进展[J].矿产综合利用,1987(4):35-41.)
- [7] Li Jinlin ,Wang Hongbin ,Wang Jianping *et al*. Process optimization of strong magnetic separation of coarse grain on Midi titanium plant [J]. Iron Steel Vanadium Titanium 2019 40(1):88-93.
  - (李金林,王洪彬,王建平, 等.密地选钛厂粗粒强磁选别工艺优化研究[J].钢铁钒钛, 2019, 40(1):88-93.)
- [8] Wang Gong. Enrichment of rare elements in vanadium-titanium magnetite in Panxi area [D]. Chengdu: Chengdu University of Technology 2017.
  - (王龚.攀西地区钒钛磁铁矿中稀有分散元素富集规律[D].成都: 成都理工大学 2017.)
- [9] Xu Lijun Li Liang Chen Liuxian et al. Comprehensive recycling situation and development direction of vanadium-titanium magnetite in Panxi [J]. Sichuan Nonferrous Metals 2011(1):1-5.
  - (徐丽君 李亮 陈六限 等.攀西地区钒钛磁铁矿综合回收利用现状及发展方向[J].四川有色金属 2011(1):1-5.)

编辑 杨冬梅