# 固溶温度对热轧态 2205 双相不锈钢组织和点蚀性能的影响

## 周 鹏 崔 珊 史洪源

(西安航空职业技术学院航空材料工程学院 陕西 西安 710089)

摘 要: 采用光学显微镜(OM) 和  $FeCl_3$  溶液浸泡法,研究了不同固溶温度对热轧态 2205 双相不锈钢组织和耐点腐蚀性的影响。结果表明: 随着固溶温度升高 2205 双相不锈钢组织中奥氏体相的形貌由纤维条状逐渐转变为短棒状、岛状并均匀分布,且奥氏体相含量不断减少,铁素体相含量不断增多。在  $1100 \, ^{\circ}$  固溶时,组织中奥氏体相与铁素体相含量比接近 1:1。在  $10\% \, FeCl_3$  溶液浸泡试验中,随着组织内铁素体相含量的增大 2205 双相不锈钢的耐点蚀性能增强,在  $1100 \, ^{\circ}$  固溶处理时试样的腐蚀速率较小,无明显的孔蚀现象,表现出良好的耐点蚀性。

关键词: 2205 双相不锈钢; 固溶温度; 显微组织; 点蚀性能

中图分类号: TF76, TG113.23 文献标志码: A 文章编号: 1004-7638(2020)05-0142-05

**DOI**: 10.7513/j. issn. 1004-7638. 2020. 05. 024 开放科学(资源服务)标识码(OSID):

听语音 聊科研

# Influence of Solution Treatment Temperature on Microstructure and Pitting Corrosion Behavior of Heat Rolling 2205 Duplex Stainless Steel

Zhou Peng Lui Shan Shi Hongyuan

(School of Aeronautical Materials Engineering Xi' an Aeronautical Polytechnic Institute Xi' an 710089 Shanxi China)

**Abstract**: The effect of solution treatment on microstructure and pitting corrosion property of heat rolling 2205 duplex stainless steel was investigated by means of OM and immersing in a 10% FeCl<sub>3</sub> solution test. The results show that as the solution treatment temperature increase the fibrous structure morphologies of austenite in hot rolling 2205 duplex stainless steel gradually evolves into equiaxed rod-like and island-like morphology and evenly distributed in 2205 duplex stainless steel and the volume fraction ferrite increases. A suitable volume fraction of  $\alpha/\gamma$ -phase is distributed uniformly after solution treatment at 1 100 °C. In a 10% FeCl<sub>3</sub> solution test pitting corrosion resistance of 2205 duplex stainless steel increases with increasing the ferrite fraction. When the solution treatment temperature is 1 100 °C no obvious corrosion area appeares in the 2205 duplex stainless steel thus the steel exhibits the best resistance to pitting corrosion.

Key words: 2205 duplex stainless steel solution treatment temperature microstructure pitting corrosion

# 0 引言

双相不锈钢含有铁素体相( $\alpha$  相)和奥氏体相( $\gamma$  相)结合了铁素体不锈钢和奥氏体不锈钢的优

异性能 兼备了高的屈服强度和良好的耐蚀性<sup>[1-3]</sup>。 其中 2205 双相不锈钢作为新一代双相不锈钢的典型代表 成为目前应用最广泛的双相不锈钢 近些年来在石油化工、造纸、食品加工、船舶运输、核能源、

收稿日期:2020-02-25

基金项目: 陕西省高校青年创新团队资助项目(2019-73)。

作者简介: 周 鹏(1975—) 男 高级工程师 博士 主要从事凝固理论及新材料制备的研究 E-mail: 27917546@ qq. com。

军事等工业领域具有巨大的需求潜力[4-6]。

已有研究[7-8] 发现,固溶处理作为决定双相不 锈钢两相配比的主要因素之一,不同固溶处理工艺 不仅会使 2205 双相不锈钢得到不同的两相配比, 而 且还会导致二次相的析出, 如碳化物、氮化物、σ相、  $\gamma$  相等,尤其  $\sigma$  相是一个富含铬和钼的金属间化合 物 减少了周围基体铬和钼的含量 易使该钢种发生 点蚀现象 增大了该钢种在使用过程中发生应力腐 蚀裂纹和腐蚀疲劳裂纹的倾向 从而影响了 2205 双 相不锈钢的耐腐蚀性能和机械性能。目前工业生产 的 2205 双相不锈钢中铁素体相比例一般控制在 30%~50%,点蚀指数较高,其孔蚀抗力当量值 (PREN) 为 36 ,但在工业应用过程中会经常发生点 蚀现象。为此 笔者对不同固溶处理下热轧态 2205 双相不锈钢进行点蚀试验,对该材料的耐腐蚀性能 做出评价 给出合理的两相配比 确定最佳固溶处理 温度 从而为生产工艺的优化以及产品质量控制提 供了重要的参考依据。

## 1 试验材料与方法

#### 1.1 试验材料

试验材料选用某钢厂生产的 2205 双相不锈钢热轧钢卷,生产过程是:钢水→连铸→加热→粗轧→精轧→热轧酸洗,该材料原始组织如图1所示,其中深灰色基体为铁素体相,白色组织为奥氏体相,从图1可以看到铁素体基体中的奥氏体相呈现纤维条状形貌且沿轧制方向平行分布。试验材料的主要化学成分见表1。

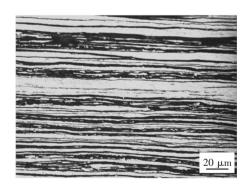



图 1 2205 双相不锈钢热轧卷的金相组织 Fig. 1 Microstructure of hot rolled 2205 duplex stainless steel

#### 1.2 试验方法

在试验中,对 5.5 mm×1 540 mm 双相不锈钢

2205 热轧钢卷进行取样,并用剪切机分别截取成 尺寸为 100 mm×100 mm 的 5 组样品,依次编号为  $0^{*}$ (作为对比样)、 $1^{*}$ 、 $2^{*}$ 、 $3^{*}$ 和  $4^{*}$ 。依次分别在箱式 退火炉中对 1 \* ~ 4 \* 样品进行 950 、1 000 、1 050 ℃ 和1 100 ℃的固溶处理,保温 15 min 后空冷至室 温 ,用光学显微镜观察所有样品的内部组织; 将固 溶处理后样品制备成 25mm×50 mm 试样 ,且每组 样品各3块试样,然后用酒精擦洗试样表面并在 超声波清洗机内清洗 5 min 后干燥,在体视显微镜 上直接观察试验前表面状态并拍照留存,然后测 量尺寸和称重。根据标准《GB/T 17897—1999 不 锈钢三氯化铁点腐蚀试验方法》将样品水平置于 10% FeCl。 溶液的 35 ℃ 恒温水浴腐蚀浸泡 24 h (测试试样置于溶液中部),试验结束后流水冲洗, 再用酒精冲洗、干燥、称重,再用体视显微镜观察 试验后的腐蚀表面状态,测量腐蚀面积、腐蚀点 数 并拍照留存。

表 1 2205 双相不锈钢的主要化学成分 Table 1 Main compositions of 2205 DSS %

| С     | Si   | Mn   | P     | S       | Ni   | Cr    | Mo   | N    |
|-------|------|------|-------|---------|------|-------|------|------|
| 0.018 | 0.50 | 1.18 | 0.022 | 0.000 5 | 5.12 | 22.36 | 3.07 | 0.18 |

#### 2 试验结果与分析

#### 2.1 固溶温度对组织的影响

对经过不同固溶处理后 2205 双相不锈钢的内部组织进行了观察 ,且分别标注出奥氏体相的晶粒尺寸 ,如图 2 所示。从图 2 可以看到 ,随着固溶温度的升高 ,奥氏体相长度从 950  $^{\circ}$  条件下的 44  $^{\circ}$  168  $^{\circ}$   $^{\circ}$ 

对铁素体相在 2205 双相不锈钢中的占比进行了统计 ,结果如图 3 所示。由图 3 可见 ,热轧态和 950  $^{\circ}$  条件下 2205 双相不锈钢中铁素体相含量较低 略高于 25% 随着固溶温度的升高 ,铁素体含量有所增加 ,经  $^{\circ}$   $^{\circ}$   $^{\circ}$  包含水冷后组织内部中铁素体相含量达到 45%。

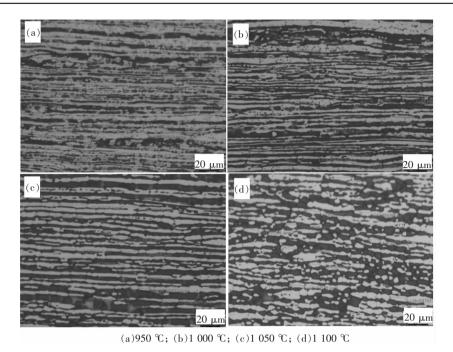



图 2 不同固溶温度下 2205 双相不锈钢的显微组织

Fig. 2 Microstructure of 2205 duplex stainless steel treated under different solution treatment temperatures

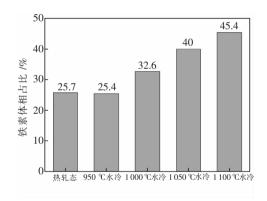



图 3 不同固溶处理下 2205 双相不锈钢的铁素体相占比 Fig. 3 Volume fraction of ferrite in 2205 duplex stainless steel with different solution treatment processes

#### 2.2 固溶温度对耐点蚀性的影响

对不同状态条件下的 2205 双相不锈钢试样进行了 10% FeCl<sub>3</sub> 点腐蚀试验,试验后试样表面的宏观和微观状态如图 4 所示。

在图 4 中 对比不同热处理条件下点蚀试验后试样的宏观和微观表面状态 点蚀试验后 950  $^{\circ}$  下的试样孔蚀尺寸最大 均在  $^{\circ}$  均在  $^{\circ}$  000  $^{\circ}$  以上 随固溶温度的升高 试样孔蚀尺寸逐渐减小且孔蚀数量减少 而  $^{\circ}$   $^{\circ}$  下的试样在体视显微镜下已难观察到孔蚀。

图 5 为不同固溶处理条件下 2205 双相不锈钢的腐蚀速率 ,从图 5 可看到 ,随着固溶温度升高 ,试样的耐蚀性能逐渐提高。

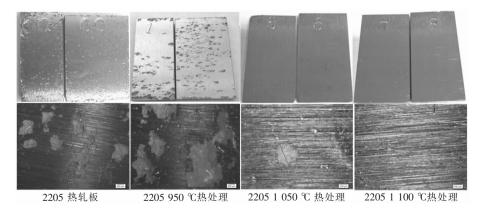



图 4 不同固溶处理条件下 2205 双相不锈钢的点蚀形貌

Fig. 4 Pitting morphologies of 2205 duplex stainless steel with different solution treatment processes

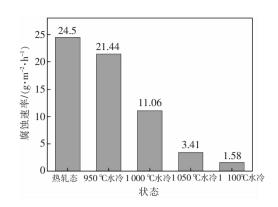
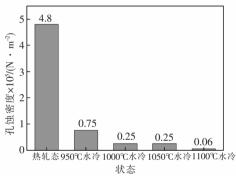




图 5 不同固溶处理条件下 2205 双相不锈钢的腐蚀速率 Fig. 5 Corrosion rates of 2205 duplex stainless steel with different solution treatment processes

图 6 为不同固溶处理条件下 2205 双相不锈钢的孔蚀评定 其中图 6(a) 为不同状态下的试样孔蚀密度 图 6(b) 为不同状态下的试样孔蚀平均面

积。从图 6(a) 可见 经过 1000 ℃ 固溶处理后 ,随 着固溶处理温度的上升,孔蚀密度呈下降趋势。 这是因为富含铬和钼元素的铁素体相可以保持双 相不锈钢表面钝化膜的稳定性及其修复能力[9]。 另外,由于铁素体相的热膨胀系数低于奥氏体相, 使得铁素体相耐点蚀性能高于奥氏体相[10],因此 铁素体相含量的增多,增强了2205 双相不锈钢的 耐点蚀性能。在图 6(b) 中可观察到 ,当固溶温度 为950 ℃时,试样的孔蚀平均面积达到最大值,分 析其原因,这是因为在950 ℃条件下保温时,2205 双相不锈钢易析出大量富含铬和钼元素的 σ 相 , 这导致在 σ 相邻近区域出现贫铬区域 ,造成局部 的富铬区及贫铬区、促使形成原电池腐蚀、诱发腐 蚀的形成[11-12]。但是 随固溶温度升高时 σ相会 发生回溶现象,其析出量大大降低[13],可使2205 双相不锈钢的耐蚀性能明显改善。



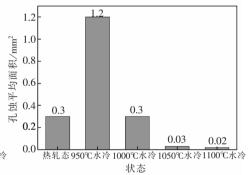



图 6 不同固溶处理条件下 2205 双相不锈钢的孔蚀密度(a) 及孔蚀平均面积(b)

Fig. 6 Pitting area and pits number of 2205 duplex stainless steel with different solution treatment processes

综上所述 热轧态 2205 双相不锈钢的耐蚀性会随着固溶温度的上升而逐渐加强 ,为了获得良好的耐点蚀性能 ,该钢种固溶处理工艺应取为  $1~100~^{\circ}$  加热保温后快速冷却。

## 3 结论

1) 随着固溶温度的升高 热轧态 2205 双相不锈 钢组织内的纤维条状奥氏体相逐渐演变为短棒状 岛状等形貌 ,晶界/相界更加清晰; 组织内铁素体相

的含量逐渐增多 ,在 1~100~% 时铁素体相含量可达 到 45% 。

- 2) 当固溶温度升高时 2205 双相不锈钢试样表面的点蚀密度和尺寸明显减少 在 950  $^{\circ}$  时孔蚀尺寸最大均在 1000  $^{\circ}$   $^{\circ}$  此 以上 在 1100  $^{\circ}$  时试样基本已无孔蚀现象发生。
- 3) 经 1 100 ℃ 固溶处理和快速冷却后 2205 双相不锈钢组织中两相配比较为合理 ,两相体积分数比接近 1:1 材料耐点蚀性能表现良好。

#### 参考文献

[1] Tong Haisheng Sun Yanhui Su Yanjing *et al.* Investigation on hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. Journal of Chinese Society for Corrosion and Protection 2019 39(2):130-137.

(童海生 孙彦辉 宿彦京 等. 海工结构用 2205 双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报 2019 39(2):

130-137.)

- [2] Zheng Jianchao Pan Chao Zhang Jiantao et al. Effect of manganese addition on resistance to pitting corrosion of duplex stainless steel S32005 [J]. Chinese Journal of Engineering 2019 41(2):246-253.
  - (郑建超 潘超 涨建涛, 等. Mn 对 2205 双相不锈钢耐点蚀性能的影响[J]. 工程科学学报 2019 41(2): 246-253.)
- [3] Yang Guirong Liao Bingbing Song Wenming *et al.* Corrosion behavior of 2205 duplex stainless steel in saturated H<sub>2</sub>S/CO<sub>2</sub> solution containing different Cl<sup>-</sup> concentration [J]. Transactions of Materials and Heat Treatment 2015 36(8): 229–236.
  - (杨贵荣 廖兵兵 宋文明 等. 2205 双相不锈钢在不同  $Cl^-$ 含量的饱和  $H_2S/CO_2$  溶液中的腐蚀行为 [J]. 材料热处理学报 2015  $\mathcal{J}$ 6(8): 229–236.)
- [4] Jin Duo Ren Hongrui Liu Fenzhao. Study on seawater corrosion resistance of marine high strength duplex stainless steel [J]. Ship Science and Technology 2018 40(20):61-63.
  - (金铎,任宏瑞,刘奋照.船用高强度双相不锈钢的耐海水腐蚀性能研究[J].舰船科学技术 2018 40(20):61-63.)
- [5] Liu Tonghua ,Wang Wei ,Qiang Wenjiang. Thermal aging of cast duplex stainless steel made in China for nuclear power plant [J]. Hot Working Technology 2016 45(22):214-216.
  - (刘同华,王伟 强文江. 核电站用国产铸造双相不锈钢的热老化[J]. 热加工工艺 2016 45(22): 214-216.)
- [6] Wang Mingjun Li Chunfu ,Wang Yao et al. Research on corrosion resistance of 2205 duplex stainless steel in Daniudi gas field [J]. Hot Working Technology 2017 A6(16):64-67.
  - (王明军 李春福 汪垚 ,等. 2205 双相不锈钢在大牛地气田的耐蚀性能研究[J]. 热加工工艺 2017 ,46(16):64-67.)
- [7] Meng Xiangjuan Meng Fanyin Song Wenwen *et al.* Effect of two kinds of heat treatment on corrosion behavior of 2205 duplex stainless steel [J]. Corrosion & Protection 2012 33(7):563-566 570.
  - (孟祥娟,孟繁印,宋文文,等.两种热处理工艺对2205 双相不锈钢腐蚀行为的影响[J].腐蚀与防护2012,33(7):563-566,570.)
- [8] Zheng Jianchao. Study on the resistance to corrosion of duplex stainless steel 2205 [D]. Beijing: University of Science and Technology Beijing 2019.
  - (郑建超. 双相不锈钢 2205 耐腐蚀性能研究 [D]. 北京: 北京科技大学 2019.)
- [9] Wei Bin ,Bai Zhenquan ,Yin Chengxian *et al*. Effects of solid solution treatment on pitting corrosion behavior of 2205 duplex stainless steel [J]. Transactions of Materials and Heat Treatment 2009 30(4):73-76.
  - (魏斌, 白真权, 尹成先, 等. 固溶处理对 2205 双相不锈钢点蚀性能的影响 [J]. 材料热处理学报 2009, 30(4):73-76.)
- [10] Chen Ming Jiang Chuanhai Xu Zhou *et al.* Experimental study on macro-and microstress state microstructural evolution of austenitic and ferritic steel processed by shot peening [J]. Surface and Coatings Technology 2019 359: 511-519.
- [11] Guo Yondan Cheng Xiaonong Lan Jianfeng et al. Precipitated phases and corrosion resistance of hot forming SAF2507 duplex stainless steel [J]. Transactions of Materials and Heat Treatment 2017 38(10):60-66.
  - (郭幼丹 程晓农 蓝剑锋 等. 热成形 SAF2507 双相不锈钢析出相与耐腐蚀性能 [J]. 材料热处理学报 2017 38(10):60-66.)
- [12] Qiao Yuanyuan. Study on the corrosion behavior of 2205 duplex stainless steel [D]. Xi'an: Xi'an University of Architecture and Technology 2011: 34.
  - (乔园园. 2205 双相不锈钢腐蚀性能的研究[D]. 西安: 西安建筑科技大学 2011:34.)
- [13] Wang Xiaoyong Huang Leqing Wang Haibao et al. Influence of solution treatment on microstructure and properties of duplex stainless steel [J]. Heat Treatment of Metals 2018 43(5):101-105.
  - (王小勇, 潢乐庆, 汪海宝, 筹. 固溶处理对双相不锈钢组织与性能的影响[J]. 金属热处理 2018 43(5):101-105.)