钛渣酸解尾气S含量研究

王海波 罗志强 吴小平 马维平 王 斌 邢慧晋

(攀钢集团研究院有限公司 钒钛资源综合利用国家重点实验室 四川 攀枝花 617000)

摘 要: 针对某钛白粉厂钛渣酸解尾气中 S 含量超标问题 对比分析了钛矿及钛渣原料中 S 含量 利用硫酸模拟了不同酸解条件下尾气中 S 含量变化规律 ,开展了钛渣酸解工艺对酸解尾气 S 含量影响规律验证试验。结果表明: 钛渣 S 含量 0.10% 低于钛矿中 S 含量 0.15% ,现场钛渣酸解尾气中的 S 主要来源于硫酸; 在模拟试验中,随着硫酸浓度的增加,尾气中 S 含量逐渐降低且降低幅度逐渐减少; 随着温度的增加,尾气中 S 含量逐渐增加且增加幅度减少; 在钛渣酸解工艺验证试验中,随着反应酸浓度由 92% 降低至 84%,反应最高温度由 226% 降低至 186% 酸解率由 93.19% 降低至 90.78%,尾气中 S 含量由 90.55 。降低至 90.78%,尾气中 S 含量由 90.55 。降低至 90.78%,属气中 S 含量基本无影响。

关键词: 硫酸法钛白; 钛渣; 钛矿; 酸解; 尾气; 硫含量

中图分类号: TF823 以757 文献标志码: A 文章编号: 1004-7638(2020)04-0092-05

听语音 聊科研与作者互动

Study on the S Content of Titanium Slag Acid Hydrolysis Tail Gas

Wang Haibo Luo Zhiqiang ,Wu Xiaoping ,Ma Weiping ,Wang Bin ,Xing Huijin

(Pangang Group Research Institute Co. Ltd. State Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources Panzhihua 617000 Sichuan China)

Abstract: To solve the problem of the exceeding S content in tail gas from a titanium dioxide plant the S content of titanium ore and titanium slag raw materials was compared and analyzed. The S content of the tail gas under different acid hydrolysis conditions was simulated using sulfuric acid. Verification test of the effect of hydrolysis process on the S content of acid hydrolysis tail gas was carried out. The results showed that the S content of titanium slag was 0.10% Jower than the 0.15% S content in titanium ore. The S in titanium slag acid hydrolysis tail gas mainly came from sulfuric acid. During the simulation test with the increase of sulfuric acid concentration the content of S in the exhaust gas gradually decreased and the extent of decrease gradually decreased. As the temperature increased, the S content of the exhaust gas gradually increased and the extent of increase decreased. During the titanium slag acid hydrolysis process verification test as the reaction acid concentration decreased from 92% to 84% the maximum reaction temperature decreased from 226 °C to 186 °C the acid hydrolysis rate decreased from 93.19% to 90.78% and the S content in the tail gas decreased from 0.55 g to 0.09 g. S originated from sulfuric acid decreased from 91.1% to 44.4%. The acid-slag ratio showed almost no visible effect on the S content in the tail gas.

Key words: sulfate process titanium dioxide titanium slag titanium ore acidolysis tail gas sulfur content

收稿日期: 2020-04-03

基金项目: 四川省科技厅转移支付项目(航空航天级钛金属制备技术研究与开发 2017GZYZF0039)。

作者简介: 王海波(1985—) 男 湖南邵阳人 硕士 高级工程师 主要从事钛白方面研究 E-mail: 15273187604@ 163. com。

0 引言

酸解是硫酸法钛白的关键工序之一 酸解的原料主要为钛原料及硫酸 ,钛原料包含钛矿和钛渣 $^{[1-2]}$ 。酸解反应的主要特点是主反应时间短 ,瞬间排气量大 尾气中水蒸气中携带大量酸雾和少量 $SO_2 \setminus SO_3$ 和 H_2S 等。在攀枝花某钛白粉生产企业 ,当以攀枝花钛铁矿为酸解原料时 酸解主反应尾气 SO_2 含量的峰值为 $100 \sim 180~\text{mg/m}^3$,符合国家环保要求($\leq 250~\text{mg/m}^3$);但是以攀钢 74% 钛渣为酸解原料时 ,在相同的尾气处理装置的条件下 酸解主反应的尾气 SO_2 含量出现超标 检测上限达 $2~000~\text{mg/m}^3$ 。

钛渣相对钛矿具有二氧化钛品位高,杂质含量低 酸料比大,反应酸浓度高及反应最高温度高等特点^[3-4]。目前国内外对钛矿或者钛渣酸解反应动力学、酸解反应机理和酸解反应工艺的研究较多^[5-8]。而针对酸解尾气 S 含量的研究较少,且主要集中在尾气 S 含量的检测及治理措施等方面^[9-11],关于钛渣酸解尾气中硫来源及酸解工艺对尾气中 S 含量影响研究报道基本处于空白状态。虽然我国硫酸法钛白企业针对酸解尾气 S 含量的处理措施基本能达到酸解尾气 S 含量达标排放标准,但装置的运行费用普遍较高,运行可靠性较低^[12]。

因此有必要开展钛渣酸解尾气 S 含量研究 ,查明钛渣酸解尾气中 S 的主要来源及酸解工艺对其影响规律 ,为降低酸解尾气中 S 含量 ,降低酸解尾气 S 处理运行成本及设备投资等提供技术指导。

1 试验部分

1.1 原料、设备和仪器

原料: 脱盐水(实验室自制)、钛渣(攀钢集团钛冶炼厂)、钛矿(攀钢集团矿业有限公司)、浓硫酸(分析纯,成都市科隆化学品有限公司)。

设备和仪器: 三口烧瓶(1 L)、烧杯(1 L)、玻璃棒、洗气瓶(500 mL)、坩埚、电动搅拌(D2004 W)、数显恒温水浴锅(LKTC-B1)、真空循环泵(SHZ-D(III))、马弗炉(MF-1000C)、X射线荧光光谱仪(Simultix 14)、离心机(CTH1650)。

1.2 试验方法

1) 酸解试验及尾气吸收

搭建如图1所示的酸解及尾气吸收装置 在吸 收瓶中均加入 0.25 L、10 g/L 的氢氧化钠溶液(经 试验验证 经过两级碱液吸收后 酸性硫吸收率达 到 100%) 打开风机,调节流量计的流量,流量1 L/min(在酸解温度约 100 ℃ 时,适当调大流量), 检查装置的气密性 ,合格后 ,从三口烧瓶的右侧口 加入一定量浓硫酸,开启电动搅拌,转速250 r/ min ,然后缓缓加入一定量钛渣 ,搅拌 5 min ,打开 电热套 温度设置为 400 ℃ ,然后迅速往三口烧瓶 加入一定量脱盐水,待物料温度升高至130 ℃,迅 速将电热套的设置温度设为0℃,待酸解反应达 到最高温度后,停止搅拌,为了吹尽残留在管道及 容器中的含 S 气体 ,10 min 后才将吸收瓶中碱液 全部转移至烧杯中,量取碱液体积,并利用酸碱中 和法检测其浓度,将三口烧瓶放置在180℃鼓风 干燥箱中保温1.5 h,然后取出,自然冷却,加水浸 取,抽滤分离钛液及残渣,量取钛液体积,将酸解 残渣放置在 850 ℃ 马弗炉中焙烧 1.5 h,放冷,称 取酸解残渣的重量,然后利用化学法测量钛液中 二氧化钛浓度和酸解残渣中二氧化钛含量。

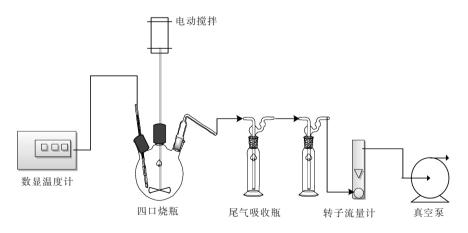


图 1 酸解尾气吸收装置

Fig. 1 Acid hydrolysis tail gas absorption device

酸解尾气中硫含量计算公式:

$$m = (C_0 \times V_0 - C_1 \times V_1) \times \frac{32}{2 \times 40}$$

式中 m 为硫含量 g/L; $C_0 \, {}_{\sim} C_1$ 分别为氢氧化钠初始浓度和最终浓度 g/L; $V_0 \, {}_{\sim} V_1$ 分别为氢氧化钠初始体积和最终体积 L; 32 为 S 相对原子质量 g/mol; 40 为 NaOH 相对分子量 g/mol; 2 为分子系数。

钛渣酸解率的计算公式

 $w = C \times V \times 100\% / (C \times V + m_1 \times \eta)$

式中 μ 为酸解率 \mathcal{N} ; C 为钛液中二氧化钛浓度,g/L; V 为钛液体积 L; m_1 为酸解残渣质量 g; η 为酸解残渣中二氧化钛含量 \mathcal{N} 。

2) 钛原料中 S 含量测定

取 10 g 钛原料 研磨至 325 目(44 μm) 筛下 然

后利用 X 射线荧光光谱仪测定钛原料中 S 含量。

2 结果及讨论

2.1 酸解尾气硫来源分析

影响酸解尾气中 S 含量的主要因素分为酸解原料和酸解工艺 酸解原料包括钛原料、硫酸、水和蒸汽 产生 S 的物质是钛原料和硫酸 酸解工艺主要包括酸渣比、反应酸浓度。

由于钛渣酸解和钛矿酸解均用到了硫酸 ,因此在此首先对比分析了钛渣与钛矿中S含量(硫含量以单质S 计 ,下同)。

由表 1 可知 ,钛渣及钛矿中 S 含量分别为 0.10% 和 0.15% ,其中钛渣中 S 含量低于钛矿 S 含量。

表1 钛原料的主要化学组成及 S 含量

		Table 1	Main chemical compositions and S contents in titanium raw materials					%		
原料	${\rm TiO_2}$	s	${\rm Ti}_2{\rm O}_3$	CaO	SiO_2	MgO	$\mathrm{Al}_2\mathrm{O}_3$	FeO	TFe	MnO
 钛渣	74.02	0.10	10.62	1.83	5.40	7.04	2.48	9.01	7.10	0.94
∻+ ⊼广	17 16	0.15	0	0.827	2 10	2 53	1 01	38 40	33 7	0.002

攀枝花某钛白粉厂采用全矿生产时,吨钛白的矿耗约为2.40 t,而采用钛渣生产钛白时,需要按照渣矿比1:1生产钛白(钛渣与钛矿分开酸解,两者酸解后的钛液混合),钛渣和钛矿的吨钛白消耗均为0.95 t。因此针对全矿酸解方式及渣矿混合酸解方式,钛原料中硫含量计算结果如表2所示。

表 2 不同酸解方式的钛原料 S 含量
Table 2 Sulfur content in titanium raw materials under different acidolysis methods

酸解方式	吨钛白耗量/t	吨钛白硫/kg	备注
渣矿混合	0.95(渣) +0.95(矿)	2.40	渣矿比为1:1
全矿	2.4	3.60	

注: 假设钛原料中硫全部进入酸解尾气。

由表 2 可知 ,渣矿混合酸解方式下 ,生产 1 t 钛 白所需的钛原料中硫为 2 . 40 kg ,而采取全矿酸解方式 ,生产 1 t 钛白所需钛原料中硫含量为 3 . 60 kg ,高于渣矿混合酸解方式。

根据现场渣矿混合钛渣酸解的碱耗统计结果,可粗略算出吨钛白钛渣酸解尾气中 S 含量约为 13.36~kg ,而钛原料中 S 含量约为 2.40~kg ,因此钛渣酸解尾气中 S 含量主要来源于酸解原料硫酸。

2.2 不同硫酸条件下模拟试验

钛渣酸解相对钛矿酸解在酸料比、反应酸浓度

和反应最高温度等方面均不相同,且在钛原料酸解时,反应温度、反应酸浓度均在变化相互干扰,因此在此通过硫酸单一物质在固定在不同工艺条件下,尾气中S含量变化规律,来模拟不同酸解工艺条件下尾气中S含量变化规律。

2.2.1 硫酸浓度

结合钛渣及钛矿酸解现场反应最高温度及反应时间实际情况 在硫酸温度 $210~^{\circ}$ 反应时间 $20~{\rm min}$ 条件下 ,考察硫酸浓度对尾气中 S 含量的影响 ,试验结果如图 $2~{\rm fm}$ 示。

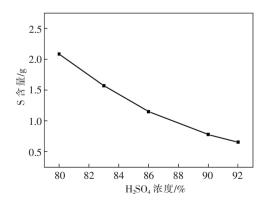


图 2 硫酸浓度对尾气中 S 含量的影响 Fig. 2 Effect of sulfuric acid concentration on the S content in tail gas

由图 2 可知,随着硫酸浓度的增加,尾气中 S 含量逐渐降低,硫酸浓度从 80% 增加至 92% 时,尾气中 S 含量从 2.09 g 降低至 0.65 g 且降低的幅度逐渐减少。硫酸的分解温度约为 400 °C ,因此在 210 °C 时,尾气中 S 主要来自原硫酸的挥发或者硫酸中水蒸发携带的硫酸。硫酸浓度越大,对应沸点越高,硫酸挥发量越少,且硫酸浓度越大,可挥发的水分越少,产生的水蒸气越少,则水蒸气携带的硫酸越少。

2.2.2 温度

在硫酸浓度 90% ,反应时间 20 min 条件下 ,考察温度对最终尾气中 S 含量的影响 ,试验结果如表 3 所示 。

表 3 温度对尾气中 S 含量的影响 Table 3 Effect of temperature on the S content in tail gas

编号	硫酸温度/℃	尾气 S 含量/g	 备注
1	170	0.25	 无沸腾
2	210	0.80	无沸腾
3	260	1.55	沸腾 有浓烟

由表 3 可知,硫酸温度由 170 $^{\circ}$ 增加至 260 $^{\circ}$ 0 时,尾气中 S 含量从 0.25 g 增加至 1.55 g。这是因为 90% 硫酸的沸点为 255 $^{\circ}$ 0,随着加热温度的增加,越来越接近 90% 硫酸的沸点,硫酸挥发量增加;通过试验观察发现,温度为 260 $^{\circ}$ 0 时,三口烧瓶中硫酸出现沸腾和浓烟现象,这与理论分析一致。

2.3 钛渣酸解工艺验证试验

在钛渣酸解现场,主要调节的工艺参数为反应 酸浓度和酸渣比,因此在此主要研究两者对尾气中 S 含量的影响。

2.3.1 反应酸浓度

在酸渣比 1.7 条件下,考察钛渣反应酸浓度对反应最高温度、酸解率及尾气中二氧化硫含量等的影响,试验结果如表 4 所示。

表 4 反应酸浓度对最高温度和尾气中 S 含量等的影响 Table 4 Effect of reaction acid concentration on reaction Tmax and S content in tail gas

 反应酸浓	反应酸浓		尾气S	S来源硫酸
度/%	$^{\circ}$	%	含量/g	占比/%
92	226	93.19	0.56	91.1
90	217	92.84	0.40	87.5
88	209	92.00	0.27	81.1
86	200	90.75	0.15	65.5
84	186	90.78	0.09	44.4

注: S 来源占比分析时,假设原料中 S 全部释放,下同。 S 来源硫酸占比=(尾气 S 含量-渣 S 含量) $\times 100\%$ /尾气 S 含量。

由表 4 可知 ,反应酸浓度由 92% 降低至 84%时 ,反应最高温度由 226 ℃降低至 186 ℃ 酸解率由 93.19%降低至 90.78% 尾气中 S 含量由 0.56 g 降低至 0.09 g S 来源于硫酸占比也由 91.1%降低至 44.4%。这是因为反应酸浓度降低后 ,反应酸的沸点降低 ,有利于尾气中 S 含量增加 ,但反应酸浓度降低后 ,酸解反应最高温度也降低 ,硫酸的温度也降低 , 有利于尾气中 S 含量减少 ,酸浓度降低与反应温度降低对尾气中 S 含量减少 ,酸浓度降低与反应温度降低对尾气中 S 含量降低作用大于反应酸浓度降低对尾气中 S 含量增加作用。虽然反应酸浓度可降低对尾气中 S 含量增加作用。虽然反应酸浓度可降低酸解尾气中 S 含量 ,但酸解率也随着降低。因此若想通过降低反应酸浓度措施降低尾气中 S 含量 ,需考虑反应酸降低 ,钛渣酸解率降低的副作用。

钛渣酸解时,反应酸浓度一般为 90%~ 93%,反应最高温度约为 220 ℃,而钛矿酸解时反应酸浓度约为 80% ~85%,反应最高温度约为 200 ℃,因此反应酸浓度是造成钛渣酸解时尾气超标的主要原因。

2.3.2 反应酸渣比

在反应酸浓度为92%条件下,考察酸渣比对反应最高温度、酸解率及尾气中二氧化硫含量等的影响,试验结果如表5所示。

表 5 酸渣比对反应最高温度和尾气中 S 含量等的影响 Table 5 Effect of acid-sludge ratio on reaction Tmax and S content in tail gas

	T _{max} /	酸解率/	 尾气 S	 S 来源硫酸
酸渣比	°C	# X // 1	た (5 含量/g	占比/%
	- C	70	口里/8	
1.72	220	93.1	0.58	91.3
1.70	218	93.8	0.56	91.1
1.68	219	93.1	0.57	91.2
1.65	218	93.0	0.58	91.3
1.62	218	91.5	0.57	91.2

由表 5 可知 酸渣比从 1.72 降低至 1.65 酸解率、反应最高温度、尾气中 S 含量和来源于硫酸的 S 占比基本不变,但酸渣比降低至 1.62 时,反应最高温度和尾气中 S 含量变化不大,但酸解率相对酸渣比 1.7 降低 2.3 个百分点。因此在一定酸渣比范围内 尾气中 S 含量与酸渣比关系不大。

钛渣酸解的反应酸渣比一般为 1.64~1.74 ,而 钛矿酸解的酸矿比一般 1.54~1.58 ,两者差异较 大,但由上述研究可知,两者酸解反应时酸料比的差 异不会造成两者尾气硫含量相差较大。

因此酸解现场若想实现钛渣酸解时尾气硫含量

达标排放 在酸解工艺方面 ,可在保证酸解率不下降或者可接受的范围内 适当降低反应酸浓度 在尾气处理设备方面 ,可采用增加尾气喷淋的水、碱用量或喷淋级数等措施。

3 结论

- 1) 钛渣酸解尾气中 S 含量主要来源于酸解反应原料硫酸。
 - 2) 以硫酸为原料 模拟考察了酸解时硫酸浓度

和温度对尾气中 S 含量的影响规律 结果表明 随着硫酸浓度的增加 尾气中硫含量减少 随着硫酸温度的增加 尾气中 S 含量减少。

3) 钛渣酸解工艺验证试验结果表明 ,反应酸浓度是影响钛渣酸解反应 S 含量的主要因素 ,酸渣比在研究范围内对钛渣酸解尾气中 S 含量基本无影响。钛渣酸解现场可在保证酸解率不下降或者可接受的前提下 ,适当降低反应酸浓度 ,实现钛渣酸解尾气 S 含量达标排放。

参考文献

- [1] Liao Xin ,Yang Shaoli ,Ma Lan *et al.* Comparative analysis of titanium dioxide prepared by sulfuric acid method using titanium concentrate and titanium slag as raw materials [J]. Inorganic Salt Industry 2019 51(10):7-11.
 - (廖鑫 杨绍利 冯兰 等.以钛精矿和钛渣为原料制备硫酸法钛白粉的对比分析[J].无机盐工业 2019 51(10):7-11.)
- [2] Maciej Jabłoński Sandra Tylutka. The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials [J]. Journal of Thermal Analysis & Calorimetry 2015, 124(1):355-361.
- [3] Wang Bin ,Cheng Xiaozhe ,Han Kexi *et al.* Study on acid hydrolysis of acid-soluble titanium slag [J]. Iron Steel Vanadium Titanium ,2009 ,30(2):9-14.
 - (王斌 程晓哲 韩可喜 等. 酸溶性钛渣酸解性能研究[J]. 钢铁钒钛 2009 30(2):9-14.)
- [4] Shui Bigang Ma Weiping Cheng Xiaozhe et al. Research on continuous acid hydrolysis of titanium slag [J]. Inorganic Salt Industry 2013 45 (9):31-34.
 - (税必刚, 马维平, 程晓哲, 等. 钛渣连续酸解工艺技术研究[J]. 无机盐工业, 2013, 45(9): 31-34.)
- [5] Zhang S Nicol M J. Kinetics of the dissolution of ilmenite in sulfuric acid solutions under reducing conditions [J]. Hydrometal–lurgy 2010 ,103(1-4):196-204.
- [6] Maciej Jabłoński Sandra Tylutka. The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials [J]. Journal of Thermal Analysis & Calorimetry 2015 ,124(1):355-361.
- [7] Zhang Suchun Nicol Michael J. An electrochemical study of the reduction and dissolution of ilmenite in sulfuric acid solutions [J]. Hydrometallurgy ,1997(3-4):146-152.
- [8] Zhang Fengping. Study on the preparation of titanium dioxide from acid-soluble titanium slag leached from waste hydrochloric acid [D]. Guiyang: Guizhou University 2015.
 - (张风平. 废盐酸浸出酸溶性钛渣制备钛白粉工艺研究[D]. 贵阳: 贵州大学 2015.)
- [9] Jin Bin ,Wang Xiaona. Improvement of sulfuric acid mist detection method for titanic acid hydrolysis tail gas by sulfuric acid method [J]. Coating Industry 2003 33(10):52-53.
 - (金斌,王晓娜. 硫酸法钛白酸解尾气硫酸雾检测方法的改进[J]. 涂料工业 2003 33(10):52-53.)
- [10] Li Xiaolan Li Zaofu Long Zhijun. Study on the application of dynamic wave technology in the treatment of acidolysis exhaust gas [J]. Science Technology and Engineering 2006, 19 (6):221-223.
 - (李小兰 李灶福 龙志军. 动力波技术应用于治理酸解尾气的研究[J]. 科学技术与工程 2006, 19(6):221-223.)
- [11] Luo Wusheng Yu Shengfei. Treatment of acid hydrolysis tail gas in titanium dioxide plant [J]. China Coatings 2005 20(10):43-44. (罗武生 喻胜飞. 钛白粉厂酸解尾气的处理 [J]. 中国涂料 2005 20(10):43-44.)
- [12] Tang Wenqian. Environmental protection measures in the production of titanium dioxide with sulfuric acid method [J]. Inorganic Salt Industry 2007 39(7):39-41.
 - (唐文骞. 硫酸法钛白生产中的环保治理措施[J]. 无机盐工业 2007 39(7): 39-41.)