钛石膏酸浸除杂试验研究

邵国庆

(攀钢集团研究院有限公司 钒钛资源综合利用国家重点实验室 四川 攀枝花 617000)

摘 要: 对钛石膏理化性质进行了分析并开展了酸浸除杂单因素试验,研究了液固比、浸出时间、浸出液浓度、浸出温度、体系压力等因素对除杂效果的影响。试验结果表明,常压下的最佳反应条件为: 液固比 4、浸出时间 45 min、浸出液浓度 15%、浸出温度 65 % 此时,10 从10 的去除率分别为 10 10 10 10 从10 以前,10 以

关键词: 钛石膏; 酸浸; 除杂; 微观形貌

中图分类号: TF823 ,TQ177.3 文献标志码: A 文章编号: 1004-7638(2020)03-0090-05

DOI: 10.7513/j.issn.1004-7638.2020.03.015 开放科学(资源服务)标识码(OSID):

听语音 聊科研

Experimental Study on Acid Leaching Purification of Titanium Gypsum

Shao Guoqing

(Pangang Group Research Institute Co. Ltd. State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization Panzhihua 617000 Sichuan China)

Abstract: The physicochemical properties of titanium gypsum were analyzed and a single factor experimental study on acid leaching purification was carried out. The effects of liquid-solid ratio , leaching time , concentration of leaching solution , leaching temperature and system pressure on the purification of titanium gypsum were studied. The results show that the optimum reaction conditions under normal pressure is determined as the following: liquid-solid ratio of 4 , leaching time of 45 min , concentration of leaching solution at 15% and leaching temperature of 65 $^{\circ}$ C and the removal rate of iron , aluminum , and magnesium is about 85% 56% and 91% , respectively. When the pressure of the reaction system increases to 2.0 MPa , the removal rate is further improved. It is found by analyzing the mineral micro-morphology , that the crystal form of calcium sulfate in the titanium gypsum after purification is not changed significantly , and that the iron hydroxide attached to the surface of the calcium sulfate crystal is removed effectively. Meanwhile , the content of iron , aluminum , and magnesium in titanium gypsum is decreased significantly after pressurized purification.

Key words: titanium gypsum, acid leaching purification, micro-morphology

0 引言

我国钛白粉生产主要为硫酸法,其生产过程产

生大量酸性废水,而钛石膏是加入石灰或电石渣中和酸性废水后产生的废渣,每生产1t钛白粉会产生6~10t钛石膏[1],全国年产生钛石膏约800万t。钛

收稿日期: 2020-01-16

基金项目: 国家重点研发计划项目(2018YFC1900500)。

作者简介: 邵国庆(1984—) 男 山东济宁人 硕士 ,工程师 ,长期从事工业固废无害化及综合利用方面的研究工作 ,E- mail: pzhsgq@163.com。

石膏主要成分为二水石膏(CaSO₄·2H₂O),由于钛石膏含杂质高、杂质种类多、品质差^[2],直接煅烧后产品无法达到建筑石膏质量要求^[3]。目前,国内钛石膏主要处理方式为直接堆存,仅有少量钛石膏作为建材添加剂及土壤改良剂使用^[4]。

有研究表明,天然石膏、脱硫石膏、磷石膏等经过酸化、结晶、晶体生长、干燥等处理后可获得石膏晶须^[5-7]。石膏晶须是以天然石膏或工业石膏为原料,经过特定工艺处理后形成的硫酸钙纤维状单晶体,其在多种工业当中具有较高的应用价值。而钛石膏中含有较高的铁、铝、镁等杂质,经过酸化后形成的 Fe³⁺、Al³⁺、Mg²⁺等杂质对石膏晶须的生长具有较强的抑制作用^[8],无法直接用于石膏晶须制备,因此,钛石膏的除杂显得尤为重要。

目前 国内外针对钛石膏除杂的研究较少 钛石膏大多局限于直接利用 导致其利用率低、经济效益不高。笔者通过开展酸浸除杂单因素试验 ,系统研究了液固比、浸出时间、浸出液浓度、浸出温度、体系压力等因素对钛石膏中铁、镁、铝等去除效果的影响 ,为下一步利用钛石膏制备石膏晶须提供了技术支撑 具有一定的应用价值。

1 试验条件及方法

1.1 试验设备

耐腐蚀高压反应釜(型号: ZCF-500); 矿物分析仪(型号: FEI-MLA-200); 激光粒度仪(型号: Master-sizer-3000); 马弗炉(自制); 循环水多用真空泵(型号: SHZ-D(III)。

1.2 试验原料

钛石膏原渣来自攀枝花某硫酸法钛白粉生产企业 含水率约 $50\% \sim 60\%$ 。试验用钛石膏(以下简称钛石膏)为经过马弗炉 200 ℃烘干、破碎、过筛($\emptyset=1$ mm)后的筛下物。烘干过程中 温度在 200 ℃以内结晶水失去过程按照式(1)和(2)进行;当温度升高至 $200\sim600$ ℃时 结晶水失去过程按照式(3)进行[9]。

$$CaSO_4 \cdot 2H_2O \rightarrow CaSO_4 \cdot 1/2H_2O + 3/2H_2O$$
 (1)

$$CaSO_4 \cdot 1/2H_2O \rightarrow CaSO_4 + 1/2H_2O \tag{2}$$

$$2Fe(OH)_3 \rightarrow Fe_2O_3 + 3H_2O \tag{3}$$

钛石膏的主要化学成分见表 1。由表 1 可以看出,钛石膏中氧化铁含量高达 8.96%, 导致烘干后钛石膏颜色为橘红色; 氧化铝含量为 2.73%, 氧化镁含量为 1.61%, 其中,还含有极少量的锰、铬、钠、钾、铍等杂质。

表 1 钛石膏主要化学成分 Table 1 The main chemical components of

titanium gypsum							
SO ₃	CaO	$\mathrm{Fe_2O_3}$	Al_2O_3	MgO	SiO_2	TiO ₂	
 47.5	33.2	8.96	2.73	1.61	2.49	2.67	

钛石膏粒径整体偏小 其中粒径处于 3.12~11. 2 μm 约占 27.9% 粒径处于 12.7~51.8 μm 约占 41. 8% 粒径大于 58.9 μm 仅占 13.17%。

1.3 试验方法

采用单因素试验,考察了液固比、浸出时间、浸出液浓度、浸出温度、体系压力等不同试验条件下钛石膏中铁、铝、镁等的去除效果。

具体方法如下:

将 98% 浓硫酸(分析纯) 稀释至一定浓度(以下称浸出液); 量取一定量该浸出液倒入耐腐蚀高压反应釜中; 称取一定量钛石膏倒入反应釜中, 关闭釜盖, 开启搅拌。常压试验时, 打开泄压阀, 开启加热, 升温至一定温度后, 反应一定时间(室温无需开启加热), 迅速将悬浊液倒入布氏漏斗进行抽滤; 加压试验时, 先将高压釜升温至一定温度, 再将 N_2 通入高压反应釜至一定压力并维持一定时间, 迅速将悬浊液倒入布氏漏斗中进行抽滤。滤饼放入马弗炉内200 $^{\circ}$ C 烘干, 烘干后的滤饼进行相应检测。

2 结果与讨论

2.1 钛石膏酸浸除杂试验理论计算

酸浸除杂实际为 H^+ 与钛石膏中的铁、铝、镁等的氧化物或氢氧化物发生反应 ,主要发生的化学反应如下:

$$2\text{Fe}(\text{OH})_3 + 3\text{H}_2\text{SO}_4 = \text{Fe}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O}$$
 (4)

$$Al_2O_3 + 3H_2SO_4 = Al_2(SO_4)_3 + 3H_2O$$
 (5)

$$MgO + H_2SO_4 = MgSO_4 + H_2O$$
 (6)

化学反应的吉布斯自由能 $\Delta G = \Delta G^0 + RT \ln k_p$, 通常认为,当 ΔG 小于 0 时,该反应为自发不可逆过程^[10]。利用热力学计算软件 FactSage6.4 对式(4)~(6)进行热力学计算 结果表明: $0 \sim 100$ $^{\circ}$ 时反应的 ΔG 均处于-120 kJ/mol 以下,即正反应在热力学上均可自发进行,因此,影响反应的试验因素主要为动力学条件。

2.2 常压单因素试验

2.2.1 液固比对钛石膏酸浸除杂效果的影响

在室温、常压、浸出液浓度 20%、浸出时间 30

min 的条件下 不同液固比对 $Fe \ Al \ Mg$ 的去除率影响如图 $1 \ Fe \ Al \ Mg$ 的去除率影响如图 $1 \ Fe \ Al \ Mg$ 的去除率均出现不同程度的增大; 然而 ,当液固比大于 $4 \ Ho \ Fe \ Al \ Mg$ 的去除率增长幅度均出现不同程度的放缓。

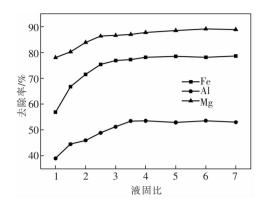


图 1 不同液固比对去除率的影响

Fig.1 Effects of liquid-solid ratio on the removal rate

2.2.2 浸出时间对钛石膏酸浸除杂效果的影响

在室温、常压、液固比为 4、浸出液浓度为 20%时 浸出时间对 Fe、Al、Mg 的去除率影响如图 2 所示。如图 2 所示,当浸出时间小于 45 min 时,随着浸出时间的延长,钛石膏中 Fe、Al、Mg 的去除率快速升高; 当浸出时间达到 45 min 时,Fe、Al、Mg 的去除率基本达到最大,分别为 79%、50%、89%。 然而,当浸出时间达到 45 min 以后,浸出时间的延长对 Fe、Al、Mg 的去除率影响愈来愈小,三者的去除率变化均不大。

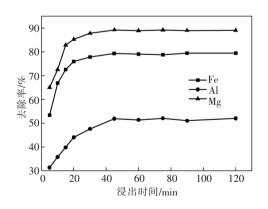


图 2 不同浸出时间对去除率的影响

Fig.2 Effects of leaching time on the removal rate

2.2.3 浸出液浓度对钛石膏酸浸除杂效果的影响

在室温、常压、液固比为 4、浸出时间为 $45 \min$ 时,浸出液浓度对 Fe、Al、Mg 的去除率影响如图 3 所示。

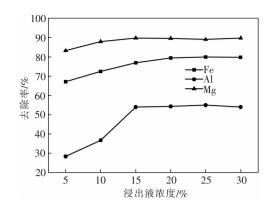


图 3 浸出液浓度对去除率影响 Fig.3 Effects of leaching solution concentration on the removal rate

由图 3 可见,随着浸出液浓度的增加,钛石膏中 Fe、Al、Mg 的去除率得到升高; 当浸出液浓度处于 5%~15%时,随着浸出液浓度的增加,三者的去除率均出现不同程度的增大,其中 Al 的去除率增加幅度最大; 浸出液浓度继续增加,三者去除率增加幅度均有所变缓。这可能是由于使用稀硫酸对Fe、Al、Mg 杂质的去除已经有显著效果[111],因此,浸出液浓度大于 15%时,三者去除率均未出现明显提升。

2.2.4 浸出温度对钛石膏酸浸除杂效果的影响

在常压、液固比 4、浸出液浓度 15%、浸出时间 45 min 条件下,浸出温度对 Fe、Al、Mg 的去除率影响如图 4 所示。由图 4 可知 随着浸出温度的增加,钛石膏中 Fe、Al、Mg 的去除率均出现不同程度的增大; 当浸出温度达到 65 ° 时,Fe、Al、Mg 的去除率分别为 85%、56%、91%; 随着温度进一步提高,三者去除率的增长幅度均出现不同程度的放缓。

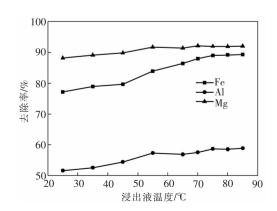


图 4 浸出温度对去除率影响 Effects of leaching temperature on the removal rate

Fig.4

单因素试验中,杂质 Fe、Al、Mg 中 Al 的去除率较低,其原因可能有两点:一是由于钛石膏中部分铝以较为稳定的铝氧八面体存在^[12],与浸出液反应困难;二是有部分铝镶嵌在硫酸钙晶体微小缝隙中,由于浸出液不容易进入微孔隙,导致其难于与浸出液接触反应。

综上可知,根据单因素试验得出的钛石膏在常压下酸浸除杂的最佳工艺条件为: 液固比 4 浸出时间 45 min 浸出液浓度 15% 浸出温度 65% ,此时,Fe、Al、Mg 的去除率分别为 85%、56%、91%。

2.3 最佳条件下的加压试验

2.3.1 最佳条件加压对钛石膏酸浸除杂效果的影响

在最佳工艺条件下,开展了加压浸出对比试验,试验结果如图 5 所示。由图 5 可以看出,当体系压力从常压(0.1 MPa)增加到 2.0 MPa,Fe、Al、Mg的 的去除率均得到不同程度的提高,Fe的去除率由 85%提升至 94%,Al的去除率由 56%提升至 83%,Mg的去除率由 91%提升至 93%。其中,Al的去除率提升幅度最大,这可能是因为加压后部分较稳定的铝氧八面体化学键被破坏,或压力增大导致浸出液渗入微小缝隙与杂质铝接触反应。

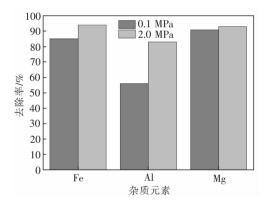


图 5 最佳条件下不同压力对去除率影响

Fig .5 Effects of system pressure on the removal rate under the optimal conditions

2.3.2 加压除杂后钛石膏表征分析

1) 矿物微观形貌及元素分析

将钛石膏原料及最佳条件下经加压除杂后的钛 石膏分别采用矿物分析仪进行矿物微观形貌及元素 分析。

由图 6.7 可以看出 試石膏原料中主要为长条状或板状的 $CaSO_4$ 晶体 晶体长度大多数集中在 10~30 μm ; 钛石膏经过加压酸浸除杂后 其 $CaSO_4$ 晶体的微观形貌未发生明显变化 仍然为长条状或板状。

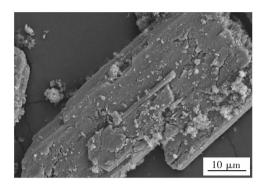


图 6 钛石膏原料 10 μm 形貌 Fig.6 Morphology of 10 μm titanium gypsum raw material

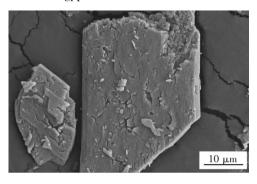


图 7 加压除杂后钛石膏 10 μm 形貌 Fig.7 Morphology of 10 μm titanium gypsum materialafter pressurized purification

钛石膏原料中 CaSO₄ 晶体表面附着少量非晶态絮状细小颗粒或团聚体 ,经矿物形貌元素点状分析为氢氧化铁; 经过加压酸浸除杂处理后 ,CaSO₄ 晶体表面附着的氢氧化铁得到有效去除。

2) 主要化学成分分析

最佳条件下加压除杂后,钛石膏主要化学成分如表 2 所示。

表 2 加压除杂后钛石膏的主要化学成分
Table 2 The main chemical components of titanium gypsum after pressurized purification %

SO_3	CaO	$\mathrm{Fe_2O_3}$	$\mathrm{Al}_2\mathrm{O}_3$	MgO	SiO_2	${ m TiO}_2$
54.5	36.7	0.51	0.46	0.11	3.68	3.44

由表 2 可知,经过加压酸浸除杂后,钛石膏中Fe、Al、Mg的含量明显降低,其中氧化铁含量仅为 0.51%左右,除杂后钛石膏颜色由橘红色变为白色;同时,CaO含量为 36.7%,折算成硫酸钙含量约为 95.6%,基本与天然石膏中硫酸钙含量相当,下一步可直接用作石膏晶须的制备原料。

3 结论

- 1) 通过单因素试验可知,钛石膏在常压下酸浸除杂的最佳工艺条件为: 液固比 4、浸出时间 45 min、浸出液浓度 15%、浸出温度 65 % ,此时,Fe、Al、Mg 的去除率分别为 85%、56%、91%。
- 2) 在最佳工艺条件下,当体系压力从常压增加到 2.0 MPa, Fe、Al、Mg的去除率得到显著提升; 其中,Fe的去除率由85%提升至94%,Al的去除率由56%提升至83%,Mg的去除率由91%提升至93%;

其中,Al的去除率提升幅度最大。

- 3) 通过矿物微观形貌及元素分析发现,钛石膏经过加压酸浸除杂处理后,其硫酸钙晶型未发生明显变化;同时,CaSO₄ 晶体表面附着的氢氧化铁得到有效去除。
- 4) 经过加压酸浸除杂后,钛石膏中 Fe、Al、Mg 的含量明显降低 氧化铁含量仅为 0.51%;同时 ,CaO 含量为 36.7% 折算成硫酸钙含量约为95.6% 基本与天然石膏中硫酸钙含量相当,下一步可直接用作石膏晶须制备的原料。

参考文献

- [1] Yang Donglei.Progress and prospect of resource utilization of phosphogypsum and titanium gypsum in China [J].Sulphuric Acid Industry 2018(10):5-10.
 - (杨冬蕾.我国磷石膏和钛石膏资源化利用进展及展望[J].硫酸工业 2018(10):5-10.)
- [2] Li Liang Hou Yongbin.Study on the properties of titanium gypsum[J].Iron Steel Vanadium Titanium 2016 37(3):81-85. (李亮 侯永斌.钛石膏的性能研究[J].钢铁钒钛 2016 37(3):81-85.)
- [3] Liu Qiaoling. Study on analysis of impurities in titanium gypsum and titanium gypsum as building material [D]. Chongqing: Chongqing University 2004: 34–38.
 - (刘巧玲.钛石膏杂质分析及其建材资源化研究[D].重庆:重庆大学 2004: 34-38.)
- [4] Huang Jiale ,Wu Bin ,Chen Kui *et al*. Red gypsum as a feasible additive for remediation of cadmium in soil [J]. Inorganic Chemicals Industry 2016 ,48(10): 69–72.
 - (黄佳乐,武斌 陈葵 等.钛石膏作土壤镉污染改良剂的可行性分析[J].无机盐工业 2016 48(10):69-72.)
- [5] Zheng Shaocong Zhu Liping Xie Gang *et al*. Experimental study on preparation of calcium sulfate whiskers from high purity natural gypsum with hydrothermal method [J]. Inorganic Chemicals Industry 2019 51(7): 39-42.
 - (郑绍聪 朱丽萍 谢刚 筹.高纯天然石膏水热法制备硫酸钙晶须研究[J].无机盐工业 2019 51(7):39-42.)
- [6] Cheng Yun Lin Meiqing Zhao Min.Research on preparation of hemihydrate gypsum whiskers from desulfurized gypsum [J].Inorganic Chemicals Industry 2016 48(2):63-67.
 - (程雲 林美庆 赵敏.脱硫石膏制备半水石膏晶须的研究[J].无机盐工业 2016 48(2):63-67.)
- [7] Geng Qingyu ,Li Jianxi Zheng Shurui et al. Preparation of dihydrate calcium sulphate whisker using phosphogypsum by atmospheric acidification method [J]. Bulletin of The Chinese Ceramic Society 2015 34(12): 3731–3736.
 - (耿庆钰 李建锡 郑书瑞 等.磷石膏常压酸溶液法制备二水硫酸钙晶须[J].硅酸盐通报 2015 34(12):3731-3736.)
- [8] Wang Wei Liu Daijun Chen Jianjun.Influence of impurities on preparation of gypsum whiskers [J].Inorganic Chemicals Industry 2016 48(4):31-34.
 - (王微 刘代俊 陈建钧.杂质对石膏晶须制备的影响[J].无机盐工业 2016 48(4):31-34.)
- [9] Luo W B ,Guan B H ,Wu Z B.Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis [J]. Journal of Thermal Analysis &Calorimetry 2011 ,104: 661–669.
- [10] Fu Xiancai Shen Wenxia ,Yao Tianyang pt al. Physical Chemistry [M]. Beijing: Higher Education Press 2005; 160-169. (傅献彩 沈文霞 姚天扬 等.物理化学(上) [M].北京: 高等教育出版社 2005: 160-169.)
- [11] Xu Chang. Influence of calcination on characteristics of quartz 'grinding and acid leaching purification [D]. Shenyang: North–eastern University 2014: 12–14.
 - (徐昌.煅烧对石英粉磨及酸浸除杂特性的影响研究[D].沈阳: 东北大学 2014: 12-14.)
- [12] Vu D D Stroven P ,Bui V B.Strength and durability aspects of ca-lcined kaolin-blended portland cement mortar and concrete [J].Cement &Concrete Composites 2001 A(23): 471-478.