钒钛分离与提取

LiV₃O₈ 材料的固相配位法合成及机理研究

刘 进 王 丽 孙瑞敏 师兆忠 赵 辉 罗 京

(河南省先进碳化硅材料重点实验室,开封市化工清洁生产技术重点实验室,开封大学,河南,开封 475004)

摘 要: 采用固相配位法合成出了层状锂钒氧化物 LiV_3O_8 ,并借助 TG-DTA 与 XRD 对其反应机理进行了研究。结果表明: 热处理温度 550 °C ,烧结 24 h 可得到单一相产物 LiV_3O_8 材料首次放电量达到了 180 mAh/g ,表现出较优的容量储存性能。采用 Coats-Redfern 积分法和 Anderson-Freeman 微分法得出合成过程最概然机理为随机成核和随后增长 ,并推出反应方程及反应动力学方程。

关键词: 锂离子电池; LiV,O,; 固相配位法; 合成动力学

中图分类号: TF841.3 文献标志码: A 文章编号: 1004-7638(2020)02-0001-05

DOI: 10.7513/j.issn.1004-7638.2020.02.001 开放科学(资源服务)标识码(OSID):

听语音 聊科研

Synthesis and Mechanism of LiV₃O₈ Material by Solid Phase Coordination

Liu Jin Wang Li Sun Ruimin Shi Zhaozhong Zhao Hui Luo Jing

(Henan Key Laboratory for Advanced Silicon Carbide Materials "Kaifeng Key Laboratory of Clean Production Technology of Chemical Industry "Kaifeng University "Kaifeng 475004 "Henan "China)

Abstract: Layered lithium vanadium oxide LiV_3O_8 was synthesized by solid phase coordination method and the reaction mechanism was studied by TG-DTA and XRD. The results show that LiV_3O_8 with a single phase can be obtained at 550 °C of heat treatment temperature for 24 h. The initial discharge capacity of the material reaches 180 mAh/g showing better capacity storage performance. Using Coats-Redfern integral method and Anderson-Freeman differential method the most probable mechanism of the synthesis process is random nucleation and subsequent growth and the reaction equation and kinetics equation are derived.

Key words: lithium ion battery LiV₃O₈ solid phase coordination method synthesis kinetics

0 引言

锂离子电池以其能量密度大、热稳定性能好和循环寿命长等优势,已成为现代最有前途的储能技术之一,越来越受到人们的关注[1]。现阶段商品化锂离子电池所采用的正极材料主要为锂钴氧化物,

但钴元素储量有限,价格较贵,新的正极材料替代品的需求越来越迫切。作为一种新型锂离子正极材料。层状锂钒氧化物 LiV_3O_8 材料以其优异的嵌锂能力 较高的比容量和循环寿命,逐渐走入人们的视野,越来越受到了人们的重视。

LiV,O₈材料电化学性能受其合成条件影响较

收稿日期: 2020-01-21

基金项目: 河南省高等学校重点科研项目(18B480001); 开封市科技发展计划项目(1808008); 开封大学校级科研基金项目博士基金项目(KDBS-2017-001); 开封大学大学生创新基金项目(锂离子电池磷酸铁锂材料的改性研究)。

作者简介: 刘 进(1979—) 男 河南开封人 高级工程师 主要研究方向为新能源材料 E-mail: liujin9931@ qq.com。通讯作者: 赵 辉(1963—) 女 河南开封人 教授 主要研究方向为功能材料 E-mail: huihuicai303@ 126.com。

大 其中液相法合成的材料电化学性能较优 但液相法合成工艺相对复杂 ,工业化应用有一定的难度; 相比较 ,固相法工艺简单 ,非常易于实现工业化应用 ,但固相法制备的产物电化学性能却差强人意 ,这主要还是在反应过程中 ,难以达到液相法分子水平的接触 ,反应过程反应物接触不均匀、不充分所导致。

固相配位法是介于固相法和液相法之间的一种合成方法,一般以配位化合物与反应物为原料,形成固相的配位前驱体,而后再进行热处理,从而得到产物。该反应过程中,反应物与配位剂形成络合,使其接触更加充分,一定程度上弥补传统固相反应过程中存在的原子接触不充分、不均匀等缺憾,从而实现在低于传统固相反应所使用温度以下,得到性能优异的产物。该方法已被成功应用于簇化合物、纳米材料[2-4]等的制备。

笔者以锂盐、钒氧化物为原料,含结晶水柠檬酸为配位络合剂,采用固相配位法制备得到层状锂钒化合物 LiV₃O₈,并对其反应机理进行探讨。

1 试验部分

1.1 药品及设备

碳酸锂 分析纯 ,上海山浦化工有限公司; 五氧化二钒 ,工业纯 攀宏钒制品有限公司; 柠檬酸 分析纯 汕头市达豪精细化学品公司。

差热差重采用日本岛津公司生产的 DT-40 ,DTA -T6 联用仪。扫描温度 $20 \sim 900$ °C ,升温速率 10 °C /min 空气气氛。物相 XRD 衍射分析采用 Rigaku X-ray Diffractometer 测试($CuK\alpha$) 扫描速度 0.02° /s 扫描范围 $5^\circ \sim 70^\circ$ 。样品形貌观察采用日本生产的 JEM -2000EX 透射电镜。红外光谱分析采用 Thermo Nicolet Avatar 360 FT-IR 红外光谱仪测试(分辨率采用 2 cm^{-1}) 扫描范围为 $4 000 \sim 400 \text{ cm}^{-1}$ 。

1.2 LiV₃O₈ 的制备

1.3 模拟电池制作

按活性物质 LiV₃O₈: 导电碳黑(sp) : PVDF = 80:15:5(重量比) 混合 涂于镍网 压制成型; 锂金

属片为负极 聚丙烯薄膜材料为隔膜 LiPF_6 溶于乙烯 碳酸脂(EC) 和丙烯碳酸脂(DMC) 中配制为电解液,手套箱中组装成两电极型模拟电池。模拟电池充放电流密度采用 $0.5~\text{mA/cm}^2$ 电压 $1.5~4.0~\text{V}_\circ$

2 结果与讨论

2.1 前驱体红外及热稳定性分析

对烘箱干燥后锂钒前驱体进行傅立叶红外分析测试和差热差重测试 测试结果分别如图 1、2 所示。

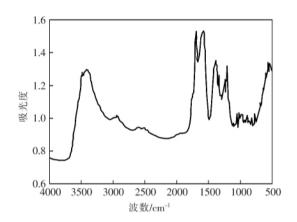


图 1 凝胶前驱体红外分析图谱 Fig.1 IR spectrum of the gel precursor

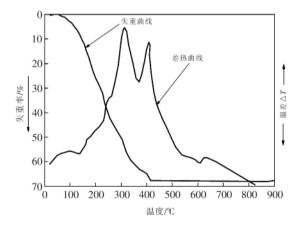


图 2 前驱体的差热差重分析

Fig.2 Thermogravimetric and differential thermal analysis of the precursor

由图 1 可以看出 ,在该前驱体配位产物的红外吸收特征峰中 ,在 3 447 cm⁻¹处出现一较强的吸收峰 ,结合反应过程 ,我们认为 ,这应该与该前驱体中存在的羟基振动有关。在 1 715 cm⁻¹处我们发现一较窄吸收峰 ,这应该与前驱配位体中含有的柠檬酸二聚体 C=0 键相关。同时 ,在 1 598 cm⁻¹处出现的吸收峰应该与 COO⁻的反对称伸缩振动相关。1 000

 $\sim 500~{
m cm}^{-1}$ 出现了一系列的吸收峰 这些系列峰应与 V=O、V-O 等键的伸缩振动有关。由以上结果 ,结合 XRD 图谱 ,可以推测 ,该配位前驱体可能的组成为 $2VOC_6H_5O_7 \cdot Li(VO) C_6H_5O_7 \cdot xH_2O_8$

图 2 为前驱体在空气氛围下的差热差重分析 在 差热曲线上 80~150 ℃出现一个非常明显的吸热峰, 同时伴随有失重情况 这可能是前驱体中柠檬酸脱水 吸热所造成: 随后出现放热 特别是在 250~360 ℃左 右有一个非常明显的吸热峰出现,同时也伴随有失重 的发生 这可能是柠檬酸及其络合物在高温下出现的 氧化燃烧放热和 Li₂CO₂ 和 V₂O₂ 部分反应所造成的, 结合图 3、4 中 XRD 结果 可以看到 此温度范围已经 有锂钒氧化物 LiV,O。形成 但同时伴随着不同化学 计量比的锂钒化合物; 随着温度的升高,在 370~450 ℃时,又出现一个非常明显的放热峰,该峰虽稍低于 前一峰,但放热明显,这可能主要来自于 Li,CO,和 V_2O_3 反应放热 该反应主要生成了 LiV₃O₈; 在随后的 550~650 ℃范围内 出现了吸热峰 但却未有明显的 重量变化 这可能主要是产物 LiV,O。部分分解成非 计量化学产物所造成。

2.2 微结构表征

2.2.1 X 衍射

根据差热差重图分析 可以看到 该前驱体的放热 反应主要集中于 $300 \sim 700~^{\circ}$ 为了研究不同温度下反应的实质 试验设计选用 $350 \lor 450 \lor 550 \lor 650~^{\circ}$ 四个温度分别进行热处理 24 h 其产物 XRD 测试结果如图 3 m 示。为了研究时间对产物的影响,选用 $550~^{\circ}$ 分别热处理 $18 \lor 24 \lor 30 h$ 其产物 XRD 结果如图 4 m 示。

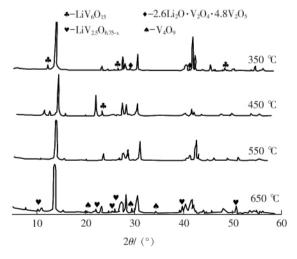


图 3 不同温度分解所得样品的 XRD 分析结果 Fig.3 XRD patterns of the samples obtained at different temperatures

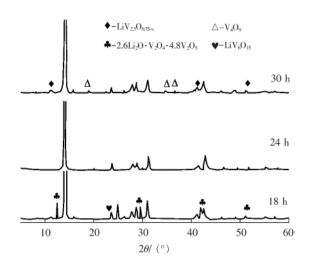


图 4 前驱体于 550 ℃分解不同时间所得产物的 XRD Fig.4 XRD patterns of the samples obtained at 550 ℃ for different time

由图 3 的 XRD 晶相结果分析可知 350 ℃样品 中,已有 LiV₃O₈生成,但同时存在有 LiV₆O₁₅、2.6 Li₂O · V₂O₄ · 4.8V₂O₅ 和 LiV₆O₁₅等物质。结合差 热差重图及 450、550 ℃ 不同温度下产物相 ,我们可 以推断,在该温度下,前驱体反应经历了生成2.6 Li₂O·V₂O₄·4.8V₂O₅ 和 LiV₆O₁₅的共熔物 ,而后进 一步形成 LiV₃O₈ 化合物。但在该温度下反应并不 完全,只是部分的形成了 LiV₃O₈ 产物; 450 ℃ 所得 产物 XRD 产物分析可以看出 其与 350 ℃下反应产 物相类似,存在一部分的 LiV,O, 同时,也同样存在 部分未完全反应的锂钒氧化物; 550 ℃ 所得产物物 相分析可以看到,此时的产物相已基本都为 LiV₂O₆ 相 其他锂钒氧化物物相已基本不存在 说明在该温 度下反应较为完全; 进一步提高温度,在650℃下, 其产物特征峰中又出现了 $LiV_{2.5}O_{6.75-x}$ LiV_3O_8 和 V₄O。等多种晶相 ,我们推断 ,这可能是在高温作用 下 产物发生了部分分解 从而生成了微量的缺氧化 合物 LiV, 50675-x和 V40。。可以看到 ,该 XRD 物相 分析结果与差热差重图中放热峰位置分析结果基本 一致。

从产物 XRD 分析中可以看到 ,18 h 所得产物物相中已经含有 LiV_3O_8 ,但物相并不纯净 ,同时还含有2.6 $Li_2O \cdot V_2O_4 \cdot 4.8V_2O_5$ 和 LiV_6O_{15} 等物相。由此可以推断 ,该热处理时间过程 ,前驱体已经有 LiV_3O_8 主相产物生成 ,但反应并不完全。继续延长热处理时间 ,从 24 h 产物 XRD 物相分析可以看到 ,该时间下 ,产物已基本得到单一的 LiV_3O_8 物相; 继

续延长热处理时间到 30 h ,其产物物相中含有 LiV_3O_8 ,但同时也出现了 V_4O_9 和 $\text{LiV}_{2.5}\text{O}_{6.75-x}$ 等多种杂相。我们认为 ,这是在该温度下 热处理时间过长 造成的产物相分解所造成 ,其主要分解产物为缺氧 化合物 V_4O_9 和 $\text{LiV}_{7.5}\text{O}_{6.75-x}$ 等。

通过差热差重的分析 ,结合 XRD 物相分析 ,可以看到 ,该合成反应在 550 $^{\circ}$ C ,24 h 时 ,产物较为均一、纯净。

2.2.2 透射电镜

图 5 为 550 ℃ 分别进行 18、24、30 h 热处理后

产物的透射电镜(TEM)测试。由图 5 可知,产物 18 h 热处理后样品的形貌呈现出棒状和块体状,且其中棒状物较多;棒状长条结构在锂离子扩散过程中,加大了锂离子扩散距离,对锂离子的嵌入和脱嵌是非常不利的一种结构。加长热处理时间到 24 h 的产物,其形貌已逐步转变为块状体,颗粒度也较为细小均一;继续加长时间至 30 h 产物,其形貌呈现出块体状,并出现了少量棒状物,块体界面出现不清,这可能是随着热处理时间的加长,颗粒间出现了团聚所造成。

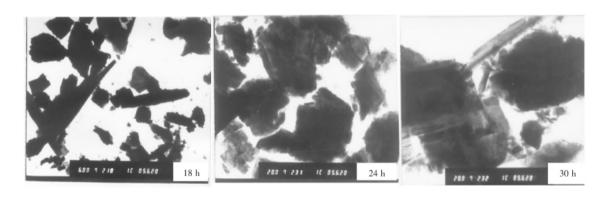


图 5 不同时间热处理后样品的 TEM 图 Fig.5 TEM images of samples with different heat treatment time

由以上分析可以得出 在 550 ℃温度下 热处理 24 h 所得产物形貌及物相最佳 进一步延长热处理时 间 只会造成产物的进一步分解(XRD 分析结果) 和 产物颗粒的团聚 所以热处理时间以 24 h 为最优。

2.3 电化学性能初探

将 550 °C 温度下 热处理 24 h 所得产物 LiV_3O_8 材料制作成模拟电池进行充放电测试 其结果如图 6 所示。由图 6 可以看到 材料放电平台在 $3\sim2$ V 初始放电电压在 3.8 V 左右 ,充电曲线和放电曲线相当所示容量基本相当 即材料充放电过程中脱嵌锂离子的量基本相当 这种情况对材料的机构保持稳定具有非常重要的意义。对比文献 [5] 中采用传统固相烧结法制备的 LiV_3O_8 材料 ,可以看出 固相配位法制备的材料性能好于传统固相烧结方法制备的产物 ,其首次放电容量达到了 180 mAh/g,比传统固相烧结法制备产物 153 mAh/g 容量提高了近 20%左右。

3 制备机理

动力学机理函数反应的是固体物质反应速率 da/dt 与反应分数之间所遵循的某种函数关系 $^{[6]}$ 。

采用文献 [7] 所述常见的几种机理函数 ,经计算 ,得到 LiV_3O_8 电极材料制备过程中的动力学函数 ,并进行峰值的相应拟合 ,得到反应过程中 ,都符合一级 Mample 单行法则 相对应的最概然机理为随机成核和随后增长。结合 XRD 物相分析 ,我们推断其各个阶段反应机理及动力学函数。

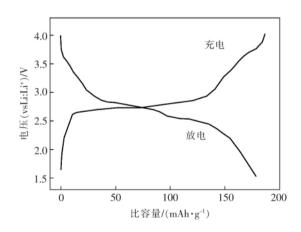


图 6 固相配位制得产物 LiV_3O_8 电极材料首次充放电曲线 Fig.6 Initial charge-discharge curves of LiV_3O_8 by solid phase coordination

80~160 ℃ 所对应的化学反应式为:

Li(VO)
$$_3$$
($C_6H_5O_7$) $_3 \cdot xH_2O \rightarrow Li(VO) _3(C_6H_5O_7) _3 + xH_2O$

动力学函数符合:

$$\frac{\mathrm{d}a}{\mathrm{d}t} = 1.811 \ 73 \times 10^{10} \,\mathrm{e}^{-111.783 \ 07/T} (1-a) ;$$

250~370 ℃所对应的化学反应式为:

Li(VO)
$$_3$$
($C_6H_5O_7$) $_3\rightarrow 2.6Li_2O \cdot V_2O_4 \cdot 8V_2O_5 + LiV_6O_{15} + LiV_3O_8 + CO_2 + HO_2$

动力学函数符合:

$$\frac{\mathrm{d}a}{\mathrm{d}t} = 3.278 \ 42 \times 10^{11} \,\mathrm{e}^{-128.661 \ 38/T} (1-a) ;$$

370~450 ℃所对应的化学反应式为:

$$LiV_3O_8 \rightarrow LiV_{2.5}O_{6.75-x} + V_4O_9$$

动力学函数符合:

$$\frac{\mathrm{d}a}{\mathrm{d}t} = 1.497 \ 29 \times 10^{30} \,\mathrm{e}^{-362.457 \ 21/T} (1-a) ;$$

550~650 ℃所对应的化学反应式为:

$$2.6\text{Li}_2\text{O} \cdot \text{V}_2\text{O}_4 \cdot 4.8\text{V}_2\text{O}_5 + \text{Li}_6\text{O}_{15} \rightarrow \text{Li}_3\text{O}_8$$

动力学函数符合:

$$\frac{\mathrm{d}a}{\mathrm{d}t}$$
 = 3.412 33×10⁴⁸ e^{-706.728 12/T} (1-a) $_{\circ}$

4 结论

- 1) 采用固相配位法制备得到 LiV₃O₈ 电极材料 ,该方法结合了固相法的工艺简单特点 ,又具有液相法化学反应混合均匀度高的优势 ,是一种非常有前景的工业化合成制备工艺路线。
- 2) XRD 结果及 TEM 测试显示 ,最佳合成热处理温度为 550 ℃ ,最佳热处理时间为 24 h。
- 3) 对产物进行了初放电测试 ,结果表明 ,该材料的首次放电量达到了 180 mAh/g ,具有较优的电化学性能。
- 4) 由 TG-DTA 曲线采用 Coats-Redfern 积分法和 Anderson-Freeman 微分法计算得出合成钒酸锂电池 材料的机理及其反应动力学方程式。

参考文献

- [1] Zhu Lin "Wang Fangyu "LiJie *et al.* Preparation of polyacrylic acid modified Fe₃O₄@ C core-shell microspheres and its electrochemical performance in lithium ion battery anodes [J/OL]. The Chinese Journal of Process Engineering: 1–7 [2020–01–21]. https://kns.cnki.net/KCMS/detail/11.4541.TQ.20200119.0922.004.html.
 - (朱琳 汪芳宇 *李*洁 等.聚丙烯酸修饰的 $Fe_3O_4@C$ 核壳型微球的制备及其在锂离子电池负极中的电化学性能 [J/OL]. 过程工程学报: 1-7 [2020–01–21].https: //kns.cnki.net/KCMS/detail/11.4541.TQ.20200119.0922.004.html.)
- [2] Lang Jianping Bao Shi' an Zhu Huizhen *et al*. Study on the solid state reactions of coordination compounds(L)-solid state synthesis and crystal structure of [(n-Bu) 4N]2 [MoOS₃(CuNCS)₃] [J]. Chemical Journal of Chinese Universities ,1992 ,13(7): 889-892. (郎建平 鮑时安 朱慧珍 等.固相配位化学反应研究(L)-[(n-Bu) 4N]2 [MoOS₃(CuNCS)₃]的固相合成及其晶体结构 [J]. 高等学校化学学报 ,1992 ,13(7): 889-892.)
- [3] Wang Jiangying Jia Dianzeng Tao Mingde.ZnO nanosize power synthesized by solid state reaction of coordination method. [J]. Journal of Functional Materials 1998 29(6): 598-603.
 - (王疆瑛,贾殿赠,陶明德.固相配位化学反应法合成 ZnO 纳米粉体 [J].功能材料,1998,29(6):598-603.)
- [4] Zhang Hongyu. Solid-state chemical synthesis and electrochemical properties of manganese oxides nanomaterials [D]. Urumqi: Xinjiang University 2019.
 - (张红玉.锰氧化物纳米材料的固相化学合成及电化学性能研究[D].乌鲁木齐: 新疆大学 2019.)
- [5] Liu Jin Zhang Zezhi ,Lan Yaozhong. New synthesis method of LiV₃O₈ as cathode material by solid state reaction of coordination method [J]. Chinese Journal of Power Source ,2006 ,30(7): 552-554.
 - (刘 进 涨泽志 ,兰尧中.固相配位法制备低结晶度钒酸锂电极材[J].电源技术 2006 30 (7):552-554.)
- [6] Li Daixi.Effect of porediameter on the solid reaction mechanism—Research on kinetics of thermal decomposition of CaCO₃ [D]. Guizhou: Guizhou University 2001.
 - (李代禧.粒径对固相反应机理的影响—碳酸钙热分解动力学的研究[D].贵阳:贵州大学 2001.)
- [7] Li Yuzeng.Thermal analysis [M].Beijing: Tsinghua University Press, 1987: 97. (李余增.热分析[M].北京: 清华大学出版社, 1987: 97.)