钒钛分离与提取

电化学还原高钛渣/C 制备 TiC 增强铁基复合粉末

孙 林 姜 艳 汗艳敏 季春伟 宋秋实2

(1.辽宁科隆股份有限公司 辽宁 辽阳 111003; 2.东北大学冶金物理化学研究所 辽宁 沈阳 110006)

摘 要: 以高钛渣和碳粉为原料,采用电化学还原的方法制备出具有多核结构的 TiC 增强铁基复合粉末。利用 X 射线衍射(XRD) 和电子显微镜等手段检测产物的相组成和微观结构,分析烧结片的电化学反应历程。结果表明: 高钛渣/C 烧结片的还原历程可分为两个阶段: 第一阶段是高钛渣的电化学还原反应,由此导致 Fe ,TiO 和 $CaTiO_3$ 的生成; 第二阶段是 $TiO \rightarrow TiC_xO_{1-x} \rightarrow TiC$ 的转化过程。高钛渣/C 粉的配比影响最终产物,增加 C 粉的掺入量可以提高最终产物中 TiC 的含量。

关键词: TiC 增强 Fe 基复合粉末; 高钛渣; 电化学还原; 碳化; 反应历程

中图分类号: TF823 ,TF123.2 文献标志码: A 文章编号: 1004-7638(2019) 06-0001-05

DOI: 10.7513/j.issn.1004-7638.2019.06.001 开放科学(资源服务)标识码(OSID):

听语音 聊科研

Preparation of TiC Reinforced Iron Based Composite Powder by Electrochemical Reduction from High Titanium Slag with Carbon

Sun Lin¹ Jiang Yan¹ ,Yu Yanmin¹ Ji Chunwei¹ Song Qiushi²

(1.Liaoning Kelong Co., Ltd., Liaoyang 111003, Liaoning, China; 2.Institute of Metallurgical Physical Chemistry, Northeastern University, Shenyang 110006, Liaoning, China)

Abstract: Titanium carbide (TiC) reinforced iron (Fe) based composite powder with a multi-core structure was electrochemically prepared directly from high titanium slag and carbon powder. The electrochemical reaction pathways for the sintered piece of the slag and carbon were investigated by examination of the partially and fully reduced samples using XRD and SEM-EDS analyses. The reduction process of the sintered piece of high titanium slag and carbon can be divided into two main stages. The first stage is the electrochemical reduction of the high titanium slag ,leading to the formation of Fe ,titanium monoxide (TiO) and calcium titanate (CaTiO₃) . The second stage is a transformation process of TiO \rightarrow TiC_xO_{1-x} \rightarrow TiC. The ratio of high titanium slag to carbon powder affects the final composition of the products and the increase in carbon powder addition can increase the TiC content of the final products.

Key words: TiC/Fe composite powder high titanium slag electrochemical reduction , carbonization reaction pathway

0 引言

Fe-TiC 复合材料具有高硬度、高强度、良好的化

学和热力学稳定性,近年来引起了广泛的关注。Fe-TiC 复合材料主要作为高强、高硬的耐磨材料应用于汽车传动轴承、船舶的发动机制动系统、固体导弹

发动机珠承喷管等。早期的研究已经表明: Fe-TiC 复合材料的耐磨性与 TiC 颗粒的尺寸和含量有关,即 TiC 颗粒的尺寸越小、含量越高 ,Fe-TiC 复合材料的耐磨性越卓越^[1]。

目前,Fe-TiC 复合材料的制备主要采用粉末冶金的工艺路线^[2-3],即以 TiC 粉末和铁粉为原料,直接混合后组成 Fe-TiC 复合材料。然而,TiC 颗粒表面存在的污染降低了与铁的粘结效果,影响了粉末冶金法制备 Fe-TiC 复合材料的性能^[4]。另外,TiC 颗粒与金属铁基体之间的润湿性较差,这也是限制粉末冶金制备 Fe-TiC 复合材料进一步发展的原因之一。近些年来,研究者开发出一系列原位合成技术,例如:熔铸法^[5]、碳热还原^[6]和自蔓延法^[7]等。尽管这些方法解决了增强相与粘结相间的结合力问题,但是较高的反应温度却导致增强颗粒的粗化。

电化学还原法(也被称为 FFC 法) 是由英国剑桥大学的科研工作者提出,该方法主要致力于直接还原金属氧化物制备相应金属或合金 $^{[8-13]}$ 。最近,有报道称,利用 FFC 法成功制备出纳米 TiC 粉末。该研究以 TiO $_2$ 和碳粉作为原料,在 900 $^{\circ}$ C 的 CaCl $_2$ 熔盐中完成 $^{[14]}$ 。较低的反应温度和熔盐良好的分散作用被认为是纳米尺寸碳化物颗粒生成的关键。

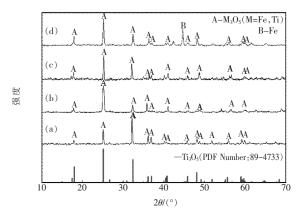
本研究中,我们同样采用电化学还原的方法,以高钛渣和碳粉混合物作为阴极,在 $800 \,^{\circ}$ 的 $CaCl_2$ -NaCl 共晶熔盐中电化学还原制备 TiC 增强铁基复合粉末。利用扫描电镜(SEM)和 X 射线衍射(XRD)等手段研究反应物与产物的微观结构和相组成。同时 根据不同时间段所得反应产物的物相变化,分析高钛渣/C 混合阴极的电化学还原历程。

1 试验部分

试验所用高钛渣由攀钢提供。高钛渣的物相组成和化学组成分别通过 X 荧光和 XRD 分析 \pounds 是显示于表 1 和图 1(a) 中。

表 1 高钛渣的化学组成
Table 1 Chemical compositions of high
titanium slag

trumum sing							
${\rm TiO_2}$	$\mathrm{Fe_2O_3}$	${\rm SiO_2}$	Al_2O_3	MgO	MnO	CaO	_
69.6	16.3	7.87	2.0	1.37	1.31	0.76	_


高钛渣与碳粉(固定质量比)一同投入钢质球磨罐中混磨 10 min; 球磨后 取 1 g 高钛渣/C 混合物放入定型磨具中 在 10 MPa 的压力下压制成直径为

10 mm、厚度为 1 mm 的片体; 然后 将所压制的片体 放置于坩埚电阻炉里 ,在惰性气体(氩气) 下 ,分别 在 $800 \cdot 1 \cdot 000 \cdot 1 \cdot 200 \cdot ^{\circ}$ 烧结 4 h。

 $CaCl_2$ 同 NaCl 按质量比 3:1 均匀混合后盛入氧化铝坩埚中 ,并置于 300 ℃的马弗炉里脱水 24 h; 然后 将脱水后的 $CaCl_2$ –NaCl 放入钢质密闭容器中 ,升温至 800 ℃;两根石墨电极(分别作为阴极和阳极)插入熔融的 $CaCl_2$ –NaCl 熔盐中 ,在 3.1 V 电压下预电解 2 h; 取出石墨阴极 ,再以高钛渣/C 片体作为阴极缓慢插入融盐中 ,以 3.1 V 恒电压进行电化学还原试验。

试验结束后 利用扫描电镜和 X 射线衍射等手段,对反应物的物相组成和微观形貌进行研究和分析。

2 结果与讨论

(a) 高钛渣; 高钛渣与碳粉烧结产物: (b) 800 $^{\circ}\mathrm{C}$, (c) 1 000 $^{\circ}\mathrm{C}$ (d) 1 200 $^{\circ}\mathrm{C}$

图 1 高钛渣(a) 和高钛渣与 C 混合物在不同温度下 烧结产物的 XRD 谱图

Fig.1 XRD patterns of (a) high titanium slag and sintered products of high titanium slag with carbon powder at (b) 800 °C ,(c) 1 000 °C , (d) 1 200 °C

图 1(b) 和(c) 显示烧结产物的主相与高钛渣一致 仍然为 $M_3O_5(M=Ti$,Fe)。另外 ,这两种片体烧结后的质量损失小于 1%。有理由判断: 当烧结温度低于 1000~% 时 ,高钛渣与碳粉几乎不发生反应。由于试验所用碳粉属于非晶结构 ,因此没有显示出衍射峰。当烧结温度提升至 1200~% 时 ,尽管主相仍然没有改变 ,但 Fe 的衍射峰清晰地显现在图 1 (d) 中。该结果表明 ,在 1200~% 下 , M_3O_5 中的 Fe

被 C 大量还原,其反应可表示为化学式(1)。在本 研究中 C 粉用于生成 TiC 的碳源 ,为避免在烧结过 程中的过量损失 1 000 ℃烧结片被用于后续研究。

$$(FeO)_{M_3O_5} + C = Fe + CO$$
 (1)

图 2(a) 显示了含 5%C 烧结片经 1 000 ℃烧结 4 h 后的微观形貌。该烧结片主要由尺寸不均的不规则 块体构成。图 2(b) 为(a) 中所标注区域的放大图。 图中显示的块体周围分散的细小颗粒应该是碳粉。

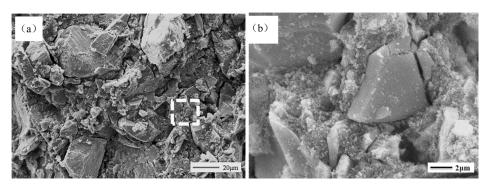


图 2 高钛渣/C 1 000 ℃烧结片的 SEM 图

Fig. 2 SEM of the sintered product from high titanium slag with carbon at 1 000 °C

在 800 ℃ NaCl-CaCl, 熔盐中 烧结片经过 24 h 电解后被完全还原。图 3(a) 为含 5%C 烧结片还原 产物的 XRD 谱图。结果显示该产物由两相组成: 一 种为陶瓷相 TiC ,另一种为金属相 FeTi 和 Ti,Si,; 当 烧结片的 C 含量提高至 10%时,还原产物的主相变 为陶瓷相 TiC 和 SiC 以及金属相 Fe。

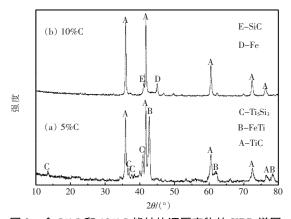


图 3 含 5% C 和 10% C 烧结片还原产物的 XRD 谱图 Fig.3 XRD patterns of reduction products with 5% carbon and 10% carbon

该结果表明: 在电化学还原的过程中 烧结片中 O原子被移除并溶解到熔盐里,而 Ti ,Fe ,Si 和 C 保 留在还原产物中。根据热力学计算结果(化学反应 式(2)~(6)) 800 ℃条件下 Ti Fe Si 和 C 四种元 素相互间能构成碳化物和金属间化合物,其中 TiC 的生成趋势最显著 ,其次为 Ti,Si, 和 SiC ,这能解释 烧结片中心含量对最终产物物相组成的影响。综 上所述 采用熔盐电化学的方法能制备出 TiC 增强 铁基复合材料,而通过改变烧结片中的 C 含量,可 以调节复合材料中陶瓷相与金属相的比例。

Ti+C→TiC	$\Delta G^{\theta} = -197.39 \text{ kJ}$	(2)					
Si+C→SiC	$\Delta G^{\theta} = -88.03 \text{ kJ}$	(3)					
$\text{Fe+3C} \rightarrow \text{FeC}_3$	$\Delta G^{\theta} = -24.97 \text{ kJ}$	(4)					
$Fe+Si{\longrightarrow} FeSi$	$\Delta G^{\theta} = -75.25 \text{ kJ}$	(5)					
$5\text{Ti}+3\text{Si} \rightarrow \text{Ti}_5\text{Si}_3$	$\Delta G^{\theta} = -196.55 \text{ kJ}$	(6)					

为了研究烧结片的电化学还原历程以及 C 粉在电 脱氧过程中所扮演的角色 本研究分别对两种烧结片 (5%C 和 10%C) 进行阶段性还原试验 分析不同还原 时间下所得产物的物相变化 结果显示在图 4 中。根 据结果 烧结片的电化学还原可分为两个阶段:

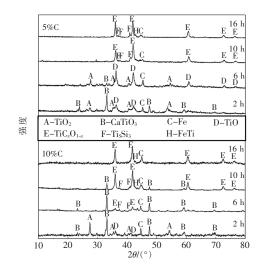


图 4 不同碳含量烧结片的电解还原历程 Fig.4 Electrolytic reduction process for sintered pieces with different carbon contents

第一阶段发生在电化学还原前 2 h。该阶段 烧结片中 M_3O_5 相不断减少 相对应的 $Fe \times TiO_2 \times CaTiO_3$ 和 TiO 依次出现。因为产物中没有发现碳化物相 ,所以该阶段主要发生电脱氧反应以及 TiO_2 与 CaO 的化合反应 这两种反应可以描述为反应式(7) ~ (9) 。虽然 C 含量不同 但是两种烧结片的还原产物物相变化几乎一致 这说明 C 粉含量对第一阶段的电化学反应影响不显著。需要指出: 第一阶段结束后 ,烧结片中的 Fe 几乎全部被还原为金属,这将提高电子在烧结片中的传递,有利于电脱氧反应的进一步进行。

第二阶段发生在电化学还原 2 h 之后。该阶段是以 $CaTiO_3$ 含量减少以及 TiC_*O_{1-x} 的含量增加为特征。另外 随着还原时间的延长 , TiC_*O_{1-x} 的衍射峰向小角度偏移 这表明氧原子个数逐渐减少而 C 原子填充到 O 原子位置(如化学反应式(10) 所示)。

$$(FeO \oplus 2TiO_2)_{M_3O_5} + 2e = Fe + 2TiO_2 + O^{2-}$$
 (7)

$$TiO_2 + 2e = TiO + O^{2-}$$
 (8)

$$TiO_2 + O^{2-} + Ca^{2+} = CaTiO_3$$
 (9)

$$TiO + e + xC = TiC_xO_{1-x} + (1-x)O^{2-}(x<1)$$
 (10)

图 5 为 C 含量对 TiC_xO_{1-x} 晶格的影响。在第一

阶段 因为 C 对生成 Fe 和 TiO 的影响不明显 ,所以两种产物中 TiO 的晶格参数差异不大; 生成 TiO 后,C 含量越高, TiC_*O_{1-*} 向 TiC 转化的速度越快,这表明 C 的固相扩散是 TiC_*O_{1-*} 向 TiC 转化的控制步骤。

图 6(a) 为 5%C 烧结片电化学还原 24h 所得产物的微观结构。该产物由 $2\mu m$ 的颗粒构成 ,这些颗粒表面光滑并且颗粒与颗粒之间有轻微的烧结现象。

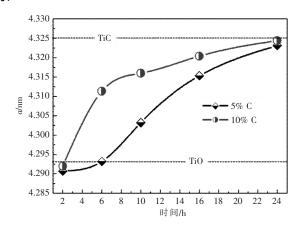
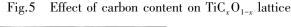



图 5 C 含量对 TiC_xO_{1-x} 晶格的影响

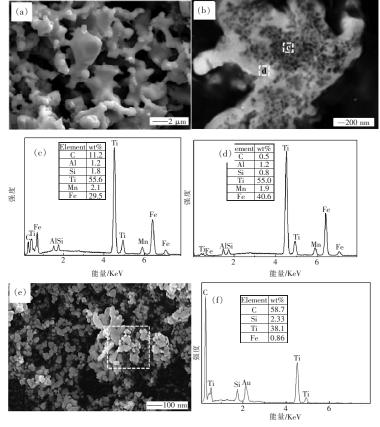


图 6 5% C 烧结片电化学还原 24 h 所得产物的微观结构

Fig.6 Microstructure of the products obtained by electrochemical reduction of the sintered piece with 5% carbon for 24 h

图 6(b) 是(a) 所示颗粒的断面背散射照片。断面上有明显的明暗差异,这表明该颗粒具有多相结构。分别对区域 C 和区域 D 进行 EDS 能谱分析(图 $6c \times d$)。通过对比: C 区域具有更高的 C 含量,而铁含量偏低。结合 XRD 结果,该复合颗粒具有多核结构,其中 TiC 颗粒作为核心。为了进一步观察 TiC 颗粒的形态,用 70 C 的 36% HCl 溶液对该样品进行浸出以使金属基体溶解。图 6(e) 和(f) 中的结果表明,生成的 TiC 颗粒尺寸约为 50 nm,并且这些颗粒之间彼此分散,并未烧结在一起。较低的生成温度被认为是纳米 TiC 颗粒生成的主要原因。

3 结论

以高钛渣和碳粉为原料 在 800 °C 的 $CaCl_2$ -NaCl 熔盐中 采用电化学还原的方法制备出具有多核结构的 TiC 增强铁基复合粉末。高钛渣/ C 粉的配比影响最终产物的物相组成 增加 C 粉的参入量可以提高最终产物中 TiC 的含量。高钛渣/C 混合阴极的还原历程可分为两个阶段: 第一阶段 主要是高钛渣的电化学还原反应 由此导致了 Fe TiO 和 $CaTiO_3$ 的生成; 在第二阶段 TiO 向 TiC_*O_{1-*} 转化 并最终生成 TiC。

参考文献

- [1] Pagounis E , Talvitie M , Lindroos V K. Influence of reinforcement volume fraction and size on the miciostructure and abrasion static pressed white iron matrix composites [J]. Metall. Mater. Trans. A. , 1996 , 27A: 4171-4181.
- [2] Seilstorfer H Moser G.The technique of hot isostatic ressing-part 1 [J]. Metall. ,1980 ,10: 925-929.
- [3] Pagounis E , Talvitie M , Lindroos Powder V K. Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing [J]. Metall. ,1997 ,40: 55-61.
- [4] Das K Bandyopadhyay T K Das S J.A review on the various synthesis routes of TiC reinforced ferrous based composites [J]Mater.Sci. 2002 37: 3881-3892.
- [5] Kattamis T Z Suganuma T.Solidification processing and tribological behavior of particulate TiC-ferrous mattrics composites [J]. Mater.Sci.Eng.A. ,1990 ,128: 241-252.
- [6] Terry B S Chinymakobvu O S.Synthesis of iron aluminide under thermal explosion condition [J].J.Mater.Sci.Lett. ,1991 ,10: 628 –629.
- [7] Welham N J.A parametic study of the mechanically activated cabothermic reduction of ilmente [J]. Miner. Eng. ,1996 ,9 (12): 1189-2000.
- [8] Chen G Z ,Fray D J ,Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J]. Nature 2000 ,407: 361–364.
- [9] Yan X Y ,Fray D J.Electrochemical studies on reduction of solid Nb₂O₅ in molten CaCl₂-NaCl eutectic [J].J.Electrochem.Soc. 2005 ,152: 308–318.
- [10] Chen G Z Gordo E Fray D J.Direct electrolytic preparation of chromium powder [J].Metall.Mater.Trans.A. 2004 B35: 223-233.
- [11] Abdelkader A M ,Fray D J. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification [J]. J. Eur. Ceram .Soc. 2012 32: 4481–4487.
- [12] Song Q S ,Xu Q ,Tao R *et al.*Preparation of a gradient Ti–TiOC–carbon film by electro–deposition [J].J.Electrochem.Sci. 2012 , 7: 272–281.
- [13] Berger L M ,Gruner W ,Landgholf E ρt al.On the mechanism of carbothermal reduction processes of TiO₂ and ZrO₂ [J].J.Refract.Met.Hard Mater. ,1999 ,17: 235–243.
- [14] Afir A ,Achour M ,Saoula N. X-ray diffraction study of Ti-O-C system at high temperature and in a continuo [J]. J. Alloys Compd. ,1999 288: 124-140.

编辑 杨冬梅