重金属离子掺杂 TiO₂ 光催化 粉体的制备与研究

周世杰 邱克辉 龚艳丽 李峻峰 张佩聪 张文涛 龙剑平

(成都理工大学材料与化学化工学院,四川成都 610059)

摘 要: 采用溶胶一凝胶法,以钛酸丁酯($C1_6H_{36}O_4Ti_4$)为钛源,无水乙醇(C_2H_6O)为有机溶剂,制备了 TiO_2 粉体,随后进行重金属 Cu 和 Ag 掺杂研究。利用扫描电子显微镜(SEM)和 X 射线衍射(XRD)等对产物进行了表征,分析了离子的不同掺杂量对 TiO_2 粉体晶型的影响。研究在紫外光(365 nm) 照射下用合成的 Cu/TiO_2 和 Ag/TiO_2 催化降解亚甲基蓝的效果,分析了离子掺杂浓度对 TiO_2 粉体光催化性能的影响。

关键词: TiO2; 光催化剂; 掺杂; Cu2+; Ag+; 亚甲基蓝; 降解率

中图分类号: TF823 ,TQ426 文献标志码: A 文章编号: 1004-7638(2019)05-0023-04

DOI: 10.7513/j.issn.1004-7638.2019.05.004 开放科学(资源服务)标识码(OSID):

听语音 聊科研

Preparation and Study of Heavy Metal Ion Doped TiO, Photocatalyst Powder

Zhou Shijie Qiu Kehui Gong Yanli Li Junfeng Zhang Peicong Zhang Wentao Long Jianping

(College of Materials and Chemistry & Chemical Engineering ,Chengdu University of Technology ,Chengdu 610059 ,Si-chuan ,China)

Abstract: TiO_2 powder was prepared by sol-gel method using butyl titanate ($C1_6H_{36}O_4Ti_4$) as the titanium source and anhydrous ethanol (C_2H_6O) as the organic solvent respectively and then the obtained TiO_2 was doped with copper and silver. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of dopant dosage on the crystal form of TiO_2 was analyzed. The degradation of methylene blue by the synthesized Cu/TiO_2 and Ag/TiO_2 photocatalysts was investigated under UV irradiation (365 nm) and the effect of dopant concentration on the photocatalytic activity of TiO_2 was also analyzed.

Key words: TiO, photocatalyst powder doping copper ion silver ion methylene blue degradation rate

0 引言

伴随现代社会各发面的飞速发展,环境问题日益凸显,人们对环境污染越来越关注,开发新型的环境友好型功能材料是目前主要且迫切的研究方向。

传统的治理环境污染的方法并不能从根源解决问题 如填埋、焚烧等 解决了当时 却会在之后带来新的问题 俗称"二次污染" 因此 人们积极开发寻找新型治理污染方法 半导体光催化技术是其中一种。近年来金属氧化物光催化技术颇受关注 ,它在治理

收稿日期: 2019-07-12

基金项目: 四川省科技计划项目(2014GZ0089)。

作者简介: 邱克辉(1958—) 教授 博导 研究方向: 矿物材料学 电话: 028-84079727 E-Mail: qiukehui@ cdut.cn。

环境污染物方面应用潜力巨大。 TiO_2 因化学性能稳定、氧化能力强、催化效率高而成为首选的金属氧化物材料。它价廉、无毒、设备简单、操作易控、无二次污染,可重复使用,被看作最具前景的绿色环保型光催化剂 $^{[1-5]}$ 。在 TiO_2 的3种变体中,锐钛矿型 TiO_2 光催化性能最好,但其能带较宽($E_g=3.2~eV$),只能在紫外光下才能显示出相对高的光催化活性和光稳定性,故它对太阳光利用率低(不足5%),因而制约了 TiO_2 优良特性的发挥 $^{[6-9]}$ 。研究发现,掺杂有利于提高 TiO_2 的光催化活性。笔者采用溶胶一凝胶法合成了掺铜和银的 TiO_2 光催化剂,用扫描电子显微镜(SEM)和X射线衍射(XRD)进行样品表征,同时模拟亚甲基蓝废水进行了降解率评价,比较了 TiO_2 化以较了 TiO_2 化以较了 TiO_2 化以较了 TiO_2 化以较了 TiO_2 化以较了 TiO_2 化以较的 TiO_2 化

1 试验

1.1 仪器及药剂

X' Pert Pro MPD 型 X 射线衍射仪 ,工作管电压 40~kV / 管电流 20~mA ,Cu 靶 ,步速 9° /min。日本日立 S530 扫描电子显微镜 ,UV-2100 型分光光度计 , DHG-9076A 型电热恒温鼓风干燥箱 ,DT100/(0.000~1) 型电子天平 ,78HW-1 型磁力搅拌器 , KSW-4-U 型马弗炉 ,800 型离心机。无水乙醇 $C_2H_5OH(AR)$,钛酸正四丁酯 [$C1_6H_{36}O_4Ti_4$](AR) , 盐酸(AR) 、硝酸银 [$Ag(NO_3)_3 \cdot 6H_2O$](AR) 、硝酸铜 [$Cu(NO_3)_3 \cdot 6H_2O$](AR) 、冰醋酸 [CH_3COOH](AR) , 亚甲基蓝 [$C_{16}H_{18}CIN_3S \cdot 3H_2O$]。

1.2 Ag/TiO₂ 和 Cu/TiO₂ 粉体的制备与表征

在常温条件下,用干燥的量筒分别量取 4 份 10 mL 的钛酸丁酯作为钛源,再量取 4 份体积位 40 mL 的无水乙醇作为溶剂;将上述量好的无水乙醇分别倒入编号为 $1\sim4$ 号的烧杯,置于磁力搅拌器调节到适当转速进行室温磁力搅拌 30 min,使其混合均匀,进行醇解,其中 $Ti(OC_4H_9)_4$ 、 C_2H_5OH 与 H_2O 的摩尔比为 1:12:9。以冰醋酸作为水解抑制剂,浓硝酸作为催化剂,调节溶胶 pH 值为 $2\sim4$,用干燥量筒量取 4 份体积为 10 mL 的冰醋酸加入上述搅拌中的混合溶液为 A 液。

用量筒量取四份体积为 10 mL 的蒸馏水备用; 掺铜量各为 0.5%、1.0%、1.5%、2.0%(摩尔分数,下 同) 和掺银量为 0.02%、0.03%、0.04%(摩尔分数,下 同)。根据计算,用电子天平分别称取硝酸铈和硝酸铜加入含蒸馏水的烧杯,溶解形成硝酸溶液 B 液。 将完成搅拌的 B 液以缓慢的速度(1 滴/s) 滴加到置于磁力搅拌器上的 A 液中,滴加完后继续搅拌 1 h,形成透明的胶体。将透明胶体室温下静置陈化两天,成为湿凝胶; 将静置后的胶体样品放入恒温干燥箱内,100 °C 干燥 5 h,形成干凝胶颗粒。干凝胶用玛瑙研钵研磨,置于陶瓷坩埚内,放入马弗炉中,并设定目标温度为 500 °C,升温时间为 30 min,当温度升到目标温度时保温 2 h,冷却至室温取出。适当时间后将热处理后的固体产物进行充分研磨,获得 $TiO_2 \times Ag/TiO_2$ 和 Cu/TiO_2 粉体。

1.3 光催化降解试验

移取 50 mL 一定浓度的亚甲基蓝溶液加适量的合成 TiO_2 、 Ag/TiO_2 和 Cu/TiO_2 粉体 ,密封后放入暗箱中避光搅拌 0.5 h ,室温搅拌下用波长等于 365 nm 的紫外线照射进行光催化反应 ,适时记录反应时间。间隔所需时间取少量溶液测吸光度 A。因为亚甲基蓝溶液的吸光度 A 正比于浓度 C ,即它的光催化降解率 D 可计算为:

 $D = [(A_0 - A_t) / A_0] \times 100\% = (C_0 - C_t) / C_0] \times 100\%$

2 结果与讨论

2.1 XRD 表征

图 1 是掺铜量各为 0.5%、1.0%、1.5%、2.0% (摩尔分数 ,下同)的合成 TiO_2 的 XRD 图。图 2 是掺银量为 0.02%、0.03%、0.04% (摩尔分数 ,下同)的合成 TiO_2 的 XRD 图。

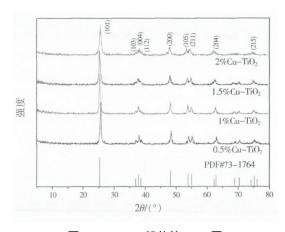


图 1 Cu/TiO_2 粉体的 XRD 图 Fig.1 XRD patterns of Cu/TiO_2 powders

从图 $1\sqrt{2}$ 可知存在 25.6°特强吸收峰和 38° $\sqrt{48}$. 5° $\sqrt{54.2}$ ° 等较弱吸收峰等锐钛矿型 TiO_2 特征峰 ,完全符合锐钛型 TiO_3 晶体的标准 XRD 图 ,从而确定

本工作合成的光催化剂的晶体均为锐钛型 TiO_2 。 XRD 中未发现铜离子和银离子的特征峰,说明离子的掺入没有影响 TiO_2 晶相。原因可能是离子进入晶格间隙或取代 Ti^{4+} 的晶格位置,而多余离子量很少,且为高度分散状,所形成的粒径微小氧化物难以检出[10-11]。

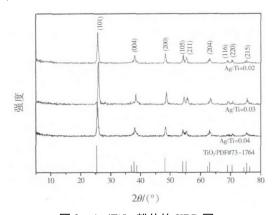


图 2 Ag/TiO₂ 粉体的 XRD 图 Fig.2 XRD patterns of Ag/TiO₂ powders

2.2 SEM 表征

图 3 为载铜摩尔分数为 1%的 TiO_2 粉末的扫描电镜(SEM) 分析结果。图 4 为载银 $0.04\%TiO_2$ 粉体的最终产物 SEM 分析结果。表明粉末由 TiO_2 微米球形成 球径约 $2.5~\mu m$ 。

2.3 光催化结果

图 5 为 Cu/TiO_2 粉末的亚甲基蓝降解曲线 图 6 为 Ag/TiO_2 粉末的亚甲基蓝降解曲线。

载铜后的 TiO_2 粉末能显著提高 TiO_2 粉末对亚甲基蓝溶液的降解能力,载铜的 TiO_2 粉末的铜含量为 0.5%与 1%和 1.5%相比 载铜量的增加有利于提高光催化性能。

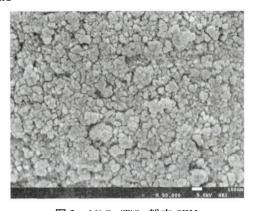


图 3 1%Cu/TiO₂ 粉末 SEM Fig.3 SEM image of 1%Cu/TiO₂ powder

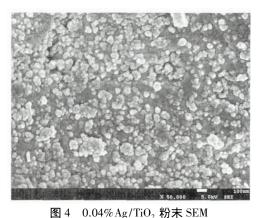


Fig.4 SEM image of 0.04% Ag/TiO₂ powder

载铜含量 1.5%的 TiO_2 粉末在短时间内显示出最佳的光催化性能; 而经过较长的时间后载铜含量为 1%的 TiO_2 粉末表现出更好的光催化性能。

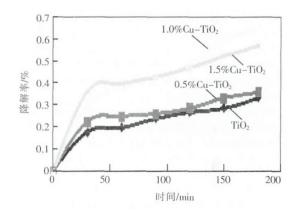


图 5 Cu/TiO₂ 粉末的亚甲基蓝降解曲线 Fig.5 Degradation curves of MB by Cu/TiO₂ powders



图 6 Ag/TiO₂ 粉末的亚甲基蓝降解曲线 Fig.6 Degradation curves of MB by Ag/TiO₂ powders

不同 Ag 掺杂量的载银 TiO₂ 粉末的光催化率随时间的延长而增加 首先说明了随紫外光灯照射时间的延

长 亚甲基蓝更多地得到了分解; 其次 ,由图 6 可以发现 在有限的 180 min 的观察时间内,当 Ag 与 Ti 的摩尔分数比为 0.04 时光催化效果最好 在紫外光光照达到 180 min 的时候光降解率达到了 68.13%; 最后,在 $Ag/TiO_2=0.03$ 时 30~120 min 光降解率有所下降,这是因为在降解亚甲基蓝的同时,有部分亚甲基蓝与光催化剂发生了脱/吸附现象 [12-13] ,当脱/吸附强度大于光降解强度时,就会表现为光降解率下降,且 120 min 时脱/吸附现象达到最大。

3 结论

通过对TiO₂ 掺杂重金属离子Ag和Cu 制备Ag/

 TiO_2 和 Cu/TiO_2 粉体 并对粉体的结构、形貌及其光催化性能进行了研究 结果表明:

- 1) 掺入离子后 ,对 TiO_2 晶体的晶型没有影响 , 仍为锐钛型。
- 2) 制备得到的 Ag/TiO_2 和 Cu/TiO_2 粉体 ,微观形貌均为球形 ,团聚后的粒度球径约 2.5 μm 。
- 3) 当摩尔分数为 Ag/Ti = 0.04 时 Ag/TiO_2 粉体 具有较好的光催化性能 ,光降解亚甲基蓝的效率可以达到 68.13%。当摩尔分数为 Ag/Ti = 1.0 时 , Cu/TiO_2 粉体在 180min 光降解亚甲基蓝的效率也可以达到 68%。都较纯 TiO_2 粉体的催化性能 30%有所提高。

参考文献

- [1] Chen Junshui "Liu Meichuan "Zhang Jidong "et al. TiO₂ nano material doped withCu(Ⅱ) and its application to polluted water treatment [J]. Technology of Water Treatment 2004 30(3):140-142.

 (陈俊水 刘梅川 涨继东 等.Cu(Ⅱ)掺杂纳米 TiO₂ 的制备及其应用研究[J].水处理技术 2004 30(3):140-142.)
- [3] Wu Shuxin Ma Zhi Qin Yong pt al. Photocatalytic redox activity of doped nanocrystalline TiO₂ [J]. Acta Physico-Chimica Sinica 2004 20(2):138-143.

 (吴树新 冯智 秦永 等.铜掺杂纳米 TiO₂ 光催化性能的研究[J].物理化学学报 2004 20(2):138-143.)
- [4] Wang Dongting.Preparation and photocatalytic properties of nanocomposite doped materials based on TiO₂ [D].Beijing: Beijing Chemical Technology University 2012: 91-112.

 (王东亭.基于 TiO₂ 纳米复合掺杂材料的制备及光催化性能研究[D].北京: 北京化工大学 2012: 91-112.)
- [5] Wang Shu ,Bai Lina ,Sun Haiying.Study on the photocatalytic technology and structure of TiO₂ powder doping by Mo [J]. Acta Physico-Chimica Sinica 2013 244:9-15.

 (王澍,白丽娜,孙海英.Mo 掺杂纳米 TiO₂ 粉体结构和光催化性能技术 [J].物理化学学报 2013 244:9-15.)
- [6] Zhang Hao Zhao Jiangping ,Wang Zhiyi *et al*. Study and application of photocatalytic degradation of formaldehyde gas by Cu-TiO₂ [J]. Journal of China Safety Science 2008(9): 32-35.

 (张浩,赵江平,王智懿,等.Cu-TiO₂光催化降解甲醛气体的研究及应用[J].中国安全科学报 2008(9): 32-35.)
- [7] Nogawa T "Isobe T "Matsushita S *et al.* Preparation and visible–light photocatalytic activity of Au– and Cu–modified TiO₂ powders [J]. Materials Letters "2012 82(1): 174–177.
- [8] Yue Linhai Shui Miao Xu Zhude *et al.*The A-R transformation and photocatalytic activities of mixed TiO₂ rare earth exides [J]. Jounal of Zhejiang University(Science Edition) 2000 27(1):1-4.

 (岳林海 水森 徐铸德 等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版) 2000 27(1):1-4.)
- [9] Guo Shuqing. The preparation and photocatalytic properties research of different load mode of Ag/TiO₂ nano-composite photocatalyst [D].Xi'an: Shanxi University of Science and Technology 2014: 1
 (郭淑清.不同负载方式的 Ag-TiO₂ 复合纳米光催化剂的制备及其光催化性能研究 [D].西安: 陕西科技大学 2014: 1.)
- [10] Malato S "Fernández-Ibáñez P "Maldonado M I *et al.* Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends [J]. Catalysis Today 2009 ,147: 1–59.
- [11] Lee M S Hong S S Mohseni M.Synthesis of photocatalyticnanosized TiO₂-Ag particles with sol-gel method using reduction agent [J].Mol.Catal.A Chem 2005 242: 135–140.
- [12] Liu S Jaffrezic N Guillard C.Size effects in liquid-phase photo-oxidation of phenol using nanometer-sized TiO₂ catalysts [J].Applied Surface Science 2008 255: 2704–2709.
- [13] Mahmoodi N M ,Arami M. Degradation and toxicity reduction of textile wastewater using immobilized titanianano photocatalysis [J].J Photochem Photobiol B 2009 94: 20-24.