

热等静压对 SLM 工艺 Ti-6Al-4V 合金组织性能的影响

Ŧ 洁 磊,马 招 胨

(上海飞机制造有限公司 上海 201324)

摘 要: 通过研究热等静压对 SLM 打印后 Ti-6Al-4V 合金的组织和性能 发现: 在经过热等静压后 原始细针状相沿 宽度和长度方向迅速长大 在长度方向逐渐被交错的 α 相截断 ,生长受到阻碍 ,而宽度方向继续生长 ,最终生长成 为短棒状的 α 相。对打印后进行消除应力和 HIP 处理的试样 α 相在长度方向保留去应力状态的形貌 ,而宽度略 有增加。经过热等静压处理后 材料的屈服强度和抗拉强度会稍有降低 ,但延伸率也会同时提升。对比增加去应 力的热等静压处理发现,中间增加一道去应力处理对材料力学性能没有明显影响。

关键词: Ti-6Al-4V; 热等静压; 选区激光熔化; 组织; 力学性能

中图分类号: TF823 文章编号: 1004-7638(2019) 04-0039-06 文献标志码: A

DOI: 10.7513/j.issn.1004-7638.2019.04.008 开放科学(资源服务)标识码(OSID):

Effect of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting

Wang Lei Ma Chao Chen Jie

(Shanghai Aircraft Manufacturing Co. Ltd. Shanghai 201324 China)

Abstract: The effect of hot isostatic pressing (HIP) on the microstructure and mechanical properties of Ti-6Al-4V alloy fabricated by selective laser melting (SLM) was studied. The results show the original acicular structure grows up rapidly along the length and width directions. Then the growth is hindered by interlaced α phase in the length direction and continues in the width direction. The structure transforms into short rod-like α phase at last. And α phase inherits the morphologies of destressing in the length direction and the width increases for the samples with destressing and HIP after SLM. The tensile strength and yield strength are lowered and the elongation is increased after HIP. The mechanical properties are not affected obviously with adding process of destressing.

Key words: Ti-6Al-4V ,hot isostatic pressing ,selective laser melting ,microstructure ,mechanical properties

引言 0

金属增材制造具有无模具、快速、全致密、近净

成型等制造技术优势,为实现复杂结构优化设计、快 速设计验证、小批量零部件快速制造、快速客户响应 等提供了新的解决思路。Ti-6Al-4V合金作为一种

收稿日期: 2019-05-22

基金项目: 上海市国际科技合作基金项目(15520701400),上海飞机制造有限公司宽体客机工艺研发与验证项目。 作者简介: 王 磊(1980—) 男. 博士 高级工程师 注要从事增材制造工艺研究。E-mail: wangleineu@ 163.com。

轻质高强度结构材料 因其所具有的优异综合力学和 物理性能 被广泛应用于航空、航天领域 是制造航空 发动机重要零部件和飞机结构件的重要工程材 料[1-3]。采用增材制造航空用钛合金复杂构件,有利 干提高生产效率,保障型号研制进度,同时降低生产 成本 这对于确保先进大型民用飞机中高强度合金用 量提高到一个较高的水平 提升整机性能是非常重要 和迫切的。近年来 随着增材制造技术的不断发展, 其在航空航天的应用也越来越广泛[4-11] 但增材制造 产品通常会存在气孔、孔洞、疲劳性能不稳定等问题, 这都影响了增材制造产品的应用[12-13]。热等静压工 艺(Hot Isostatic Press ,HIP) 是以惰性气体为传压介 质 将制品放置到密闭的容器中 在高温高压的共同 作用下 向制品施加各向同等的压力 ,可以减少或消 除构件内部的孔隙 改善制品的力学性能。笔者采用 选区激光熔化(SLM) 工艺得到的钛合金试样 研究热 等静压工艺对其组织性能的影响,为热等静压工艺对 增材制造 Ti-6Al-4V 组织性能的影响提供理论依据。

1 试验

试件的增材制造过程在德国产选区激光熔化设备 EOS M280 上进行,该设备的成形空间 250 mm×250 mm×325 mm ,最大激光功率为 400 W ,尺寸精度为±0.1 mm。设备实物照片如图 1 所示。

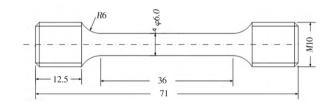
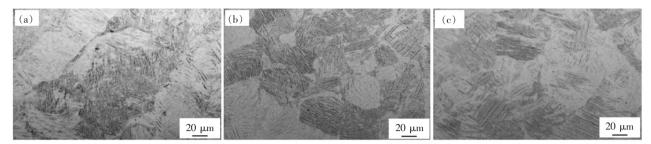
试验 采用的 钛合 金粉 末化学成分符合 AMS4998 的要求 粉末粒度为 D_{10} = 28.44 μ m D_{30} = 38.69 μ m D_{50} = 46.37 μ m 粉末平均直径 47.62 μ m。试验中采用的打印参数为设备推荐的 Ti-6Al-4V 打印参数。为了对比不同状态下的组织和性能 ,将部分试样进行热等静压(HIP) 或消除应力(SR) 处理 ,消除应力的温度为 800 \mathbb{C} 、保温时间 2 h ,热等静压的保温温度为 950 \mathbb{C} 、压力 150 MPa、保温时间 4 h。将处理后的试样进行切开 ,观察平行于沉积方向(H)、垂直于沉积方向(V)、45°斜向(D) 的不同方向的组织和性能。机械抛光 ,使用 HF: HNO3: $H_2O=1:2:7$ (体积比) 的溶液进行腐蚀 ,在光学显微镜下观察沉积态、热处理后的微观组织。 拉伸试验件设计按 ASTM E8 中规定 ,如图 2 所示 ,力学性能在 Zwick 万能试验机上进行。

2 试验结果及分析

2.1 热等静压对组织的影响 选区激光熔化工艺得到的 Ti-6Al-4V 典型组织

是由粗大的柱状 β 晶及复杂的晶内亚显微结构针状 α '马氏体结构组成 经不同的热处理工艺处理后显微组织中 α 相会呈现不同的形貌。热等静压可以改善冷却速度过快形成的过冷组织或者亚稳定组织 通常要在非常高的温度下加热 相当于一个高温退火的过程。热等静压完全可以消除快速成形过程由于冷却速度快形成的马氏体等组织 ,从而转变形成高温退火形态的组织。

图 1 EOS M280 选区激光熔化(SLM) 设备实物照片 Fig.1 Equipment photo of EOS M280 for selective laser melting

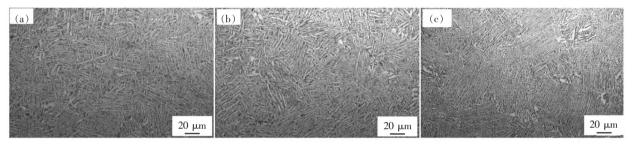

图 2 拉伸试样 Fig.2 Tensile specimens

图 $3 \sim 5$ 是 Ti-6Al-4V 合金经 SLM 工艺打印后、经 HIP 处理及消除应力和 HIP 处理后不同状态下的金相组织照片。 SLM 态由原始 β 晶与快速冷却形成的针状 α' 马氏体组织组成 ,经过 HIP 后 β 柱状晶及针状 α' 马氏体全部分解为交错分布的 $\alpha+\beta$ 网篮组织。 热等静压温度为 950 °C ,在 950 °C 条件下合金处于($\alpha+\beta$) 双相区 ,在 150 MPa 的压力下 ,原始 β 晶粒边界在变形过程中有一定程度破坏 ,但由于合金变形量不大 ,仍保留原始的晶粒形态 ,仅出现少量分散分布的颗粒状晶界 α ,原始 β 晶粒内的 α 片承受变形后变短 , α 束集尺寸较小 ,各片丛交错排列 ,形成网篮组织。 经去应力后热等静压处理的 α 片层宽度较小 ,仍保留细长的片层结构。

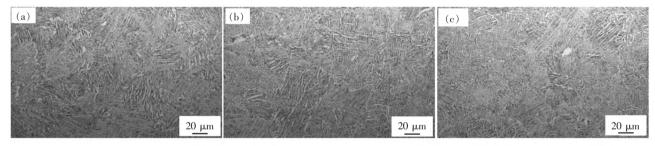
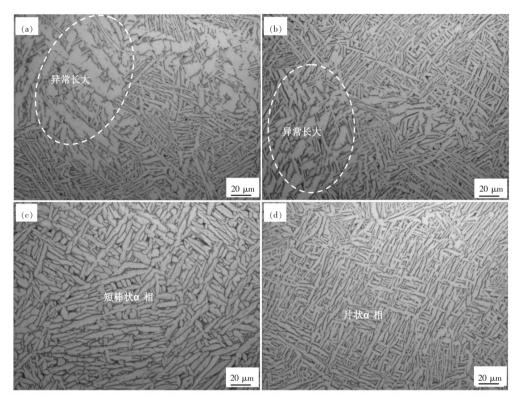

(a)平行沉积方向 H;(b)垂直沉积方向 V;(c)斜向 45°方向 D

图 3 SLM 后的 Ti-6Al-4V 组织 Fig.3 Microstructure of Ti-6Al-4V fabricated by SLM

(a)平行沉积方向 $H_{\mathfrak{f}}(b)$ 垂直沉积方向 $V_{\mathfrak{f}}(c)$ 斜向 45° 方向 D

图 4 SLM 后进行 HIP 的 Ti-6Al-4V 组织 Fig.4 Microstructure of Ti-6Al-4V treated by HIP after SLM



(a)平行沉积方向 H;(b)垂直沉积方向 V;(c)斜向 45°方向 D

图 5 SLM 后进行消除应力和 HIP 的 Ti-6Al-4V 组织 Fig.5 Microstructure of Ti-6Al-4V treated by destressing and HIP after SLM

在 D 向 ,HIP 与去应力+HIP 的金相组织均为 细长的条状 α 片层 ,但是存在局部区域 α 条的异常 长大现象 ,如图 6(a) 、(b) 所示。垂直方向从基板 最底层成型开始 ,激光束在扫描当前层时 ,前一层已 凝固部分再次被加热 ,层与层之间总会存在整个平面的重熔 ,而斜向在成型过程中 ,层与层逐渐的偏移 ,数使激光束扫描平面的重熔区存在一部分 ,所以 表层总会存在局部晶粒接收热量较多 ,生长较快。在热处理过程中 ,原始较大相会继续生长优势 ,吞并 周围的小晶粒 ,所以 α 片异常长大。在 H 向 ,HIP 的 α 片层宽度增加 ,而去应力+HIP 的 α 片层仍保

留细长状。在 V 向 ,HIP 的 α 相形貌接近短棒状 ,长宽比降低 如图 6(c)、(d) 所示 ,去应力+HIP 的 α 相呈条状。对 SLM 直接沉积态试样直接进行热等静压时 ,原始细针状相在 950 ∞ 沿宽度和长度方向迅速长大 ,在长度方向逐渐被交错的 α 相截断 ,生长受到阻碍 ,而宽度方向继续生长 ,最终生长成为短棒状的 α 相。而经去应力后热等静压的试样 ,在去应力过程中 α 相的生长形态为细长针状或片状 ,再经热等静压时 α 相在长度方向受到交错的 α 相阻碍 ,宽度方向开始生长 ,所以最终 α 相在长度方向保留去应力状态的形貌 ,而宽度略有增加。

(a)D 向 HP;(b)D 向去应力+HIP;(c)H 向 HIP;(d)H 向去应力+HIP

图 6 不同状态下 D 向、V 向 Ti-6Al-4V 的组织 Fig.6 Microstructure of Ti-6Al-4V fabricated by different treatments

图 $7\sim9$ 为不同状态下 Ti-6Al-4V 的 SEM 组织 河以看出 热等静压后 α 相片层宽度约 $1.5\sim2$ μm ; 去应力后进行热等静压的 α 条宽度约 $1\sim1.5$ μm 。为定量分析 β 相体积分数 α 条宽度与热处理工艺的关系 采用 Image-Pro Plus 6.0 统计 结果如图 10 所示。经热等

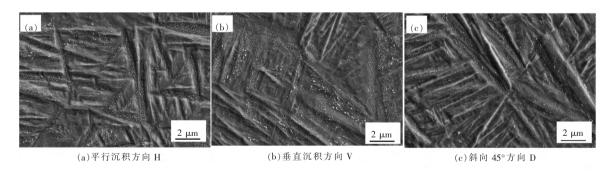


图 7 SLM 后的 SEM 组织 Fig.7 Microstructure of samples fabricated by SLM

2.2 热等静压对力学性能的影响

对 SLM 构件而言,热等静压热处理能减少或消除构件内部的缺陷,从而提高构件的力学性能和疲劳性能。根据前期工作基础,本研究中选择热等静压温度为 950 ℃、压力为 150 MPa、保温保

压时间为4h。

为研究热等静压热处理对 Ti-6Al-4V 合金力学性能的影响,设置了 SLM+HIP 与 SLM+消除应力+HIP 两组热处理工艺,对比研究 HIP 对材料力学性能影响。每种热处理制度 9 根样品(3 根横向生长,

3 根纵向生长 3 根斜向生长)。表 1 为经 SLM+HIP , SLM+800 $^{\circ}$ C /2 h/FC+HIP 后试件的强度和延伸率。 从表 1 可以看出 冯采用 950 $^{\circ}$ C /4 h/150 MPa 的 HIP

热处理工艺时 材料的屈服强度和抗拉强度相较退 火去应力和固溶时效热处理降低明显 ,材料的断后 延伸率略有提升。

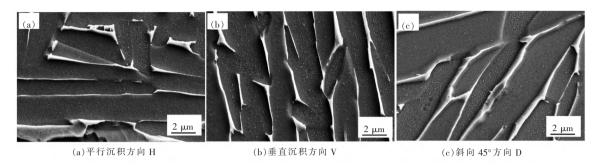


图 8 SLM 后进行 HIP 的 SEM 组织 Fig.8 Microstructure of samples treated by HIP after SLM

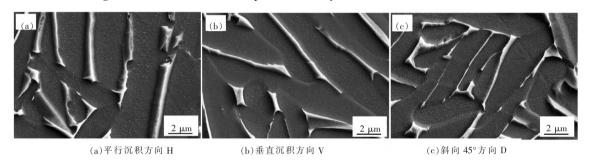


图 9 SLM 后进行消除应力和 HIP 的 SEM 组织 Microstructure of samples treated by destressing and HIP after SLM

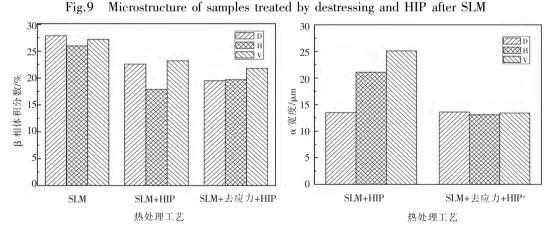


图 10 热等静压条件与 β 相体积分数 α 条宽度关系

Fig.10 The relationship between different treatments and the volume fraction of β , the width of α lath

表 1 不同的后处理对性能的影响 Table 1 Effect of post treatments on the mechanical properties

工艺	Н向			V向			D 向		
	$R_{\rm eL}/{ m MPa}$	$R_{\rm m}/{ m MPa}$	A/%	$R_{\rm eL}/{ m MPa}$	$R_{\rm m}/{ m MPa}$	A / %	$R_{\rm eL}/{ m MPa}$	$R_{\scriptscriptstyle \mathrm{m}}/\mathrm{MPa}$	A / %
SLM+消除应力+HIP	867	970	16.1	851	950	15.3	869	976	15.7
SLM+HIP	860	969	16.7	864	968	17.4	870	980	15.8

材料经 SLM+HIP 处理后,屈服强度约为 860 MPa 抗拉强度约为 970 MPa,断后延伸率 15%~

18%; 材料经 SLM+800 ℃ /2 h/FC+HIP 处理后 ,屈服强度约为 860 MPa 抗拉强度约为 960 MPa 断后延伸

率 $14\% \sim 17\%$ 。前述组织结构研究表明热等静压后 α 相片层宽度约 $1.5 \sim 2~\mu m$; 去应力后进行热等静压的 α 条宽度约 $1 \sim 1.5~\mu m$ 较去应力及固溶时效层片厚度明显增加 因此 材料的屈服强度和抗拉强度会降低 同时伴随延伸率的提升。对比增加去应力的 HIP 热处理发现 中间增加一道去应力处理对材料力学性能没有明显影响 建议实际使用中根据零件的结构特征选择是否需要添加中间去应力热处理。

3 结论

1) 经过 HIP 处理后 金相组织中打印态的原始

细针状相沿宽度和长度方向迅速长大,在长度方向逐渐被交错的 α 相截断,生长受到阻碍,而宽度方向继续生长,最终生长成为短棒状的 α 相。

- 2) 对打印态的试样进行消除应力和 HIP 处理,组织中的 α 相在长度方向保留消除应力态的形貌,在宽度方向上则略有增加。
- 3) 经过 HIP 处理后,试样的屈服强度和抗拉强度会稍有降低,但延伸率也会同时提升。对比增加去应力的 HIP 处理发现,中间增加一道去应力处理对材料力学性能没有明显影响。

参考文献

- [1] Fu Yanyan Song Yueqing Hui Songxiao *et al*. Research and application of typical aerospace titanium alloys [J]. Chinese Journal of Rare Metals 2006 30(6):850-856.
 - (付艳艳 宋月清 惠松骁 等.航空用钛合金的研究与应用进展[J].稀有金属 2006 30(6):850-856.)
- [2] Zhu Zhishou. Recent research and development of titanium alloys for aviation application in China [J]. Journal of Aeronautical Materials 2014 34(4):44-50.
 - (朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报 2014 34(4):44-50.)
- [3] Huang Zhanghong Qu Henglei Deng Chao *et al.* Developmeng and application of aerial titanium and its alloys [J]. Materials Review 2011 25(1):102-107.
 - (黄张洪,曲恒磊,邓超, 等.航空用钛及钛合金的发展及应用[J].材料导报, 2011, 25(1):102-107.)
- [4] Huang Weidong Lin Xin.Research progress in laser solid forming of high performance metallic component [J].Materials China, 2010 29(6):12-27.
 - (黄卫东 林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展 2010 29(6):12-27.)
- [5] Lin Xin Huang Weidong. High performance metal additive manufacturing technology applied in aviation field [J]. Materials China 2015 34(9): 684-688.
 - (林鑫, 黄卫东, 应用于航空领域的金属高性能增材制造技术 [J], 中国材料进展 2015 34(9): 684-688.)
- [6] Wang Huaming Zhang Shuquan ,Wang Xiangming.Progress and challenges of laser direct manufacturing of large titanium strutural components [J].Chinese Journal of Laser 2009 ,36(12):3204–3209.
 - (王华明 涨述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光 2009,36(12):3204-3209.)
- [7] Yang Enquan. The influence of 3D printing to the development of aviation manufacturing [J]. Aeronautical Science & Technology, 2013, 1:13-17.
 - (杨恩泉.3D 打印技术对航空制造业发展的影响 [J].航空科学技术 2013 ,1:13-17.)
- [8] Tian Zongjun & Dongdong & Shen Lida <code>et al.</code> Application and development of laser additive manufacturing technology in aeronautics and astronautics [J]. Aeronautical Manufacturing Technology 2015 [11: 38–42.
 - (田宗军 顺冬冬 沈理达 等.激光增材制造技术在航空航天领域的应用与发展[J].航空制造技术 2015 ,11:38-42.)
- [9] Murr L E Gaytan S M.Electron beam melting [J]. Comprehensive Materials Processing 2014, 10: 135-161.
- [10] Wang F D ,Willams S ,Colegrove P *et al*. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metallurgical and Materials Transaction A 2013 *A*4: 968–977.
- [11] Chu Mingqiang ,Wang Lei ,Ding Hongyu *et al*. Additive manufacturing for aerospace application [J]. Applied Mechanics and Materials 2015 ,798: 457-461.
- [12] Chu Mingqiang Zhou Xiaowei Sun Xiaofeng *et al.* Evaluation of mechanical properties of Ti-6Al-4V fabricated by selective laser melting (SLM) [C] // 31st Congress of the International Council of the Aeronautical Sciences Belo Horizonte Brazil: 2018: 1-8.
- [13] Kasperovich G Hausmann J.Improvement of fatigue resistance and ductility of Ti6Al4V processed by selective laser melting [J]. Journal of Materials Processing Technology 2015 220: 202-214.