含Nb微合金化钢组织及性能分析

窦为学^{1,2},国 栋³,冯 捷³,郭志红³,朱苗勇¹,王晓丽⁴

(1.东北大学冶金学院,辽宁 沈阳 110004; 2 敬业钢铁有限公司,河北 平山 040500; 3.河北科技大学材料科学与工程学院,河北 石家庄 050018; 4.包头钢铁职业技术学院教务处,内蒙古 包头 014010)

摘 要: 随着现代铁路高速、重载运输的发展,对重轨钢的质量和性能提出了更高、更苛刻的要求。目前国产热轧980 MPa 级(U75V) 钢轨已不能满足线路使用的要求,为了开发出超高硬度及强度的高速重轨钢,采用 Nb 微合金化技术,通过实验室研究得出: 当微合金化元素 Nb 的含量为 0.028%时,重轨试验钢的力学性能达到最大值即抗拉强度为 1229 MPa、屈服强度为 716 MPa、硬度为 HB343、伸长率为 11%; 重轨试验钢的组织性能达到最好值即珠光体片层间距为 0.26 μm,晶粒度等级提高,晶粒变得细小,晶粒度等级为 8~8.5 级。该研究为超高强度和硬度级别重轨钢的开发应用提供了参考。

关键词: 高速重轨钢; Nb 微合金化; 力学性能; 组织性能

中图分类号: TF76, TG142.1 文献标志码: A 文章编号: 1004-7638(2019)01-0148-05

DOI: 0.7513/j.issn.1004-7638.2019.01.026 开放科学(资源服务)标识码(OSID):

eim 10 c

Microstructure and Performance Analysis of Nb Microalloy Steel

Dou Weixue^{1,2}, Guo Dong³, Feng Jie³, Guo Zhihong³, Zhu Miaoyong¹, Wang Xiaoli⁴

(1.School of Metallurgy, Northeastern University, Shenyang 110004, Liaoning, China; 2. Technique Department, Jingye Iron and Steel Co., Ltd., Pingshan040500, Hebei, China; 3. School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang050018, Hebei, China; 4. Department of Academic Affairs, Baotou Iron & Steel Vocational Technical College, Baotou014010, Inner Mongolia, China)

Abstract: With the development of high speed and heavy load transportation in modern railway, higher demanding requirements have been put forward for performance of high speed rail steel. At present, domestic hot-rolled 980 MPa (U75V) rail cannot meet the requirements. Nb microalloying steel was produced in laboratory in order to develop ultra-high hardness and strength steel for speed rail. When Nb content is 0.028%, mechanical properties of high speed rail test steel reach the maximum value, ie, its tensile strength is 1 229 MPa, yield strength is 716 MPa, hardness is HB343 and elongation rate is 11%. And the microstructure performance of Nb test steel reaches the best state. Space between pearlite lamellar is 0.26 µm, and its grain size grade is ASTM No.8 to 8.5.

Key words: high speed rail steel, Nb microalloying, mechanical properties, microstructure

0 引言

迄今为止,我国已对高速铁路重轨钢的生产、材

质和性能等进行了广泛研究,且其质量已有明显的提高,但与国外同类产品相比,尚存在着一定的差距。 为了满足我国铁路重载、高速化的发展需求,跟上国

收稿日期: 2018-08-28

基金项目: 国家自然科学基金(51874116,51774108) 资助。

作者简介: 窦为学(1973—),男,汉族,河北唐山人,博士研究生,高级工程师,主要研究方向: 转炉炼钢及精炼新工艺高品钢夹杂物的研究,E-mail: douweixue2006@126.com;通讯作者: 冯捷(1963—),男,蒙古族,河北石家庄人,工学博士,副教授,主要研究方向: 高品质钢夹杂物行为变化的研究。E-mail: hbgyfj@163.com。

%

际重轨钢的发展潮流,提高我国重轨钢产品实物质量 和市场竞争力, 生产出内部质量高纯净度, 断面尺寸 高精度和良好可焊性的重轨钢,将是我国重轨钢发展 永恒的主题。采用重钢轨可以提高轨道结构承载能 力,延长线路大修周期,节约钢材,提高货运密度,延 长重轨使用寿命,具有明显的技术经济效益[1-3]。

目前,国内主要的钢轨钢种有 U71Mn 和 U75V, 轧态抗拉强度 R_m 分别 ≥ 880 MPa 和 ≥ 980 MPa, U75V 热处理后 $R_m \ge 1$ 230 MPa^[4-5],性能指标满足不 了小半径曲线段线路和重载线路的需要。鞍钢和包 钢分别研制了贝氏体钢轨,强度达到了1250 MPa,但 贝氏体轨生产难度大,成本高[6-9]。攀钢研制了PG4 热处理轨,强度达到了1300 MPa,对于没有热处理设 施的厂家不能批量生产[10-12]。因此,研制一种性能 介于 U75V 和贝氏体轨之间,低成本的轧态抗拉强度 大于 1 080 MPa 的钢轨显得尤为重要。

笔者采用 Nb 微合金化技术,因为 Nb 微合金化 可使重轨钢产生明显的晶粒细化作用,降低珠光体 片层间距,在珠光体的铁素体片层和渗碳体中明显 观察到富 Nb 的析出物[13-15]。 Nb 微合金化的钢轨 与 V 作为微合金化元素的钢轨相比, Nb 微合金化 钢轨具有更高的强度和延展性[16-17]。另外,当 Nb

含量低于 0.05% 时, Nb 的加入对材料的强度、塑性 和淬诱性等力学性能均产生有利作用[18]。因此,向 U75V(Cr含量为0.45%)重轨钢中加入合适的微合 金化元素 Nb,以期得到一种性能介于 U75V 和贝氏 体轨之间,低成本的轧态抗拉强度大于 1 080 MPa 的钢轨是本文的意义所在。

含Nb重轨试验钢力学性能分析

在某厂生产的重轨钢 U75V(Cr 含量为0.45%) 的基础上。以不同 Nb 含量微合金化重轨试验钢为 研究对象,成分如表 1 所示。Nb 含量分别为:不含 Nb,编号为 0-Nb; Nb 含量为 0.014%,编号为 1-Nb; Nb 含量为 0.028%, 编号为 2-Nb; Nb 含量为 0.044%,编号为3-Nb。含Nb 重轨钢成分设计的指 导思想为: 在保证强度指标均满足要求的前提下尽 量减少合金元素添加,以降低生产成本及提高试验 钢的塑性指标,同时通过调整 Nb 元素含量来提高 试验钢的力学性能和腐蚀性能,各种元素的加入量 以及之间的配比要符合一定的设计依据。铌含量选 择的依据利用 25 kg 中频感应炉冶炼→铸锭→轧 制。按照上述试验方法制备试样并进行检测,测得 含 Nb 试验钢的力学性能见表 2。

表 1 不同 Nb 含量的试验化学检验成分(质量分数) Table 1 Chemical compositions of different Nb micro-alloyed steels (mass fraction)

编号	С	Si	Mn	P	s	V	Cr	Nb	N	Als
0-Nb	0.75	0.62	0.904	0.011 9	0.008	0.056	0.46	0	0.053	0.024 2
1-Nb	0.77	0.58	0.924	0.016 5	0.008	0.056	0.45	0.014	0.052	0.024 1
2-Nb	0.78	0.58	0.881	0.011 7	0.005	0.059	0.48	0.028	0.054	0.023 9
3-Nb	0.75	0.54	0.904	0.013 6	0.006	0.058	0.46	0.044	0.053	0.024 1

表 2 含 Nb 试验钢的力学性能

Table 2 Mechanical properties of Nb test steels

Ţ	编号	硬度(HB)	冲击韧性/J	屈服强度/MPa	抗拉强度/MPa	伸长率/%	面缩率/%
	0-Nb	323	9.6	683	1 138	9.0	19
	1-Nb	327	9.8	694	1 173	10.0	18
	2-Nb	343	9.8	716	1 229	11.5	19
_	3-Nb	328	9.6	687	1 184	11.5	21

表 2 给出了 4 种含 Nb 试验钢抗拉强度和屈服 强度的结果。由表 2 可以看出: 随着 Nb 含量增高, 试验钢的抗拉强度、屈服强度、硬度和拉伸性能均明 显提高,而冲击性能变化不大。

当 Nb 含量小于 0.028% 时, 随 Nb 含量的增加, 试验钢的抗拉强度由 1 138 MPa 提高到 1 229 MPa, 试验钢的屈服强度由 683 MPa 提高到 716 MPa; 试

验钢的硬度(HB)由 323 提高到 343,试验钢的伸长 率由 9%提高到 11.5%。当 Nb 含量超过 0.028%后, 试验钢的抗拉强度、屈服强度均有所下降。 这说明, 提高试验钢中的Nb含量会明显改善钢的强度、硬 度性能。重轨钢中 Nb 含量仍是影响钢强度、硬度 及拉伸性能的重要因素。

由表 2 还可以看出: 在试验钢中加入 Nb 不能明显

提高冲击功,这一结果表明: Nb 对重轨钢冲击性能的影响与对拉伸性能的影响具有类似的规律性。由表 2 数据还可以得出: 随着含 Nb 量的增加,试验钢的强度、硬度性能呈现增加的趋势。但是当 Nb 含量超过0.028%后,试验钢的强度、硬度性能呈现减小的趋势。因此,试验钢的 Nb 微合金化最佳值为0.028%。

2 含 Nb 重轨试验钢组织性能分析

试样处理,打磨抛光后用 4%的硝酸酒精腐蚀,然后采用光学显微镜观察试样组织。试验钢属于珠光体型钢^[10-12],试样在高倍扫描电镜下观察到的显微组织是极其细小的片状珠光体,对其进行片层间距的测量。

每个试样上选取五个不同的区域,对所拍摄的组织照片进行处理,对每个区域进行测量,如图 1 所示,并计算总的平均值,得到珠光体平均片层间距值,依次为 0.35、0.30、0.26、0.31 μm。

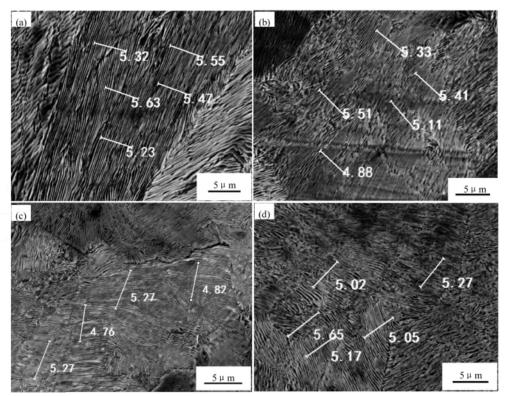
通过比较图 1 可以得出,随着试验钢 Nb 含量的变化,重轨钢珠光体片层间距发生明显变化。随着 Nb 含量的增高,试验钢的珠光体片层间距不断缩小。当 Nb 含量由零增加至 0.028% 的过程中,试验钢的珠光体片层间距由 $0.35~\mu m$ 降低至 $0.26~\mu m$,片层间距显著细化;但当 Nb 含量超过 0.028% 后,继续增加 Nb 含量到 0.044%,试验钢的珠光体片层间距由 $0.26~\mu m$ 升高至 $0.31~\mu m$ 。

(a)0-Nb; (b)1-Nb; (c)2-Nb; (d)3-Nb 图 1 含 Nb 试验钢珠光体片层间距

Fig.1 Pearlite lamellar space of Nb test steels

试验结果表明:随着铌含量的增加,重轨试验钢的珠光体片层间距先逐渐减小,而后开始增大。当铌含量 0.028%时,珠光体片层间距最细。继续增加铌含量,珠光体片层间距变大。这表明,在本试验条件下,铌的微合金化可实现对珠光体片层间距的细化作用。

3 含 Nb 重轨试验钢晶粒度分析


利用金相显微镜和扫描电镜观察含 Nb 重轨钢的微观组织。图 2 依次是 0-Nb、1-Nb、2-Nb 和 3-

Nb 试验钢的组织形貌照片。

由图 2 可以看出,0-Nb 钢晶粒度等级为 $6.5\sim7$ 级,相应珠光体组织片层间距值为 $0.35~\mu m;~1-Nb$ 钢晶粒度等级为 $6.5\sim7.5$ 级,相应珠光体组织片层间距值为 $0.30~\mu m;~2-Nb$ 钢晶粒度等级为 $8.0\sim8.5$ 级,相应珠光体组织片层间距值为 $0.26~\mu m;~3-Nb$ 钢晶粒度等级为 $7\sim7.5$ 级,相应珠光体组织片层间距值为 $0.31~\mu m$ 。经对比可知:随 Nb 含量增加,珠光体片层间距逐渐变小,晶粒度等级逐渐提高,晶粒

变得细小。但是当 Nb 含量增加至超过 0.028% 后, 珠光体片层间距变大, 晶粒度等级降低, 晶粒变得粗

大。这表明,在本试验条件下,铌的微合金化可实现对高碳钢奥氏体晶粒的细化作用。

(a)0-Nb; (b)1-Nb; (c)2-Nb; (d)3-Nb

图 2 含铌试验钢的微观组织图像 Fig.2 Microstructure of Nb test steels

4 结论

为了探究含 Nb 微合金化钢的组织性能,以某厂工业生产的 U75V(Cr 含量为 0.45%)钢为基础,以不同 Nb 含量重轨试验钢为研究对象,当微合金化元素 Nb 的含量由零增加至 0.044%时,通过对试验钢的力学性能、组织性能和晶粒度进行分析得出:

1) 试验钢的抗拉强度由 1 138 MPa 提高到1 229 MPa, 屈服强度由 683 MPa 提高到 716 MPa, 硬度 (HB) 由 323 提高到 343。当 Nb 含量超过0.028%后,试验钢的抗拉强度、屈服强度均有所下降。这说明合适的 Nb 含量会明显提高试验钢的强度和硬度性能。本试验 Nb 微合金化最佳值为 0.028%。

- 2) 试验钢的珠光体片层间距由 0.35 μm 降低至 0.26 μm, 即珠光体片层间距逐渐变小; 当 Nb 含量 超过 0.028%后, 随着 Nb 含量的增高, 试验钢的珠光体片层间距升高至 0.31 μm, 强度、硬度也随之下降。 因此, 适量铌的微合金化可实现对珠光体片层间距的细化。
- 3) 试验钢的晶粒度等级由 6.5~7 级提升至 8~8.5 级,其晶粒明显变细; 当 Nb 含量超过 0.028%后,晶粒度等级降低至 7~7.5 级。因此,适量铌的微合金化可实现对高碳钢奥氏体晶粒的细化作用。
- 4) 本研究对开发超高强度和硬度级别重轨钢有一定的参考作用。

参考文献

- [1] Xu Cong. Cause of contact fatigue damage on U75V 60 kg/m rail [J]. Iron Steel Vanadium Titanium, 2018, 39(3): 158–164. (徐聪. U75V 60 kg/m 钢轨接触疲劳裂纹伤损分析 [J]. 钢铁钒钛, 2018, 39(3): 158–164.)
- [2] Huo Xiangdong, Xia Jinian, Li Liejun, et al. Research and development of titanium microalloved high strength steel [J]. Iron

Steel Vanadium Titanium, 2017, 38(4): 105-112.

(霍向东,夏继年,李烈军,等.钛微合金化高强钢的研究与发展[J].钢铁钒钛,2017,38(4):105-112.)

- [3] Guo Yuehua, Liu Ming, Li Hongguang, et al. Effects of vanadium micro-alloying on the properties of Z-beam with high strength and weather-resistance [J]. Iron Steel Vanadium Titanium, 2016, 37(4): 57–61.
 - (郭跃华,刘明,李红光,等.V 微合金化对高强高耐候乙字钢性能的影响[J].钢铁钒钛,2016,37(4):57-61.)
- [4] Yang Xiongfei. The role of niobium in microalloying rail steel [N]. World Metals, 2016-04-19(B12). (杨雄飞. 铌在微合金化钢轨钢中的作用 [N]. 世界金属导报, 2016-04-19(B12).)
- [5] Wang Wenjun, Dong Tao.Niobium microalloying engineering steel [N].World Metals, 2014-08-26 (B08). (王文军,东涛.铌微合金化工程用钢[N].世界金属导报, 2014-08-26 (B08).)
- [6] Wang Xiaoli, Song Bo, An Shengli, et al. Corrosion behavior of Nb heavy rail in simulated industrial atmosphere [J]. Hot Working Technology, 2014, 43(4): 1–4.
 - (王晓丽,宋波,安胜利,等.含 Nb 重轨钢在模拟工业大气环境下的腐蚀行为[J].工业加热,2014,43(4):1-4.)
- [7] Cao Jiangang, Li Wenxue, Huang Liying. Study on microstructure and phase transition temperature of BNbRE steel [J]. Hot Working Technology, 2014, 43(12): 123-125.
 - (曹建刚,李文学,黄丽颖.BNbRE 钢组织和相变温度研究[J].热加工工艺,2014,43(12):123-125.)
- [8] Wang Bing, Liu Qinyou, Wang Xiangdong. Effect of grain size on atmospheric corrosion resistance of ultralow carbon of steel [J]. Acta Metallurgica Sinica, 2012, 48(5): 601-606.
 - (汪兵,刘清友,王向东.晶粒尺寸对超低碳 IF 钢耐大气腐蚀性能的影响 [J].金属学报,2012,48(5):601-606.)
- [9] Li Bo, Zhu Guoming, Tao Gongming, et al. Dynamic CCT curve of U75V steel for high-speed railway [J]. Journal of Iron and Steel Research, 2014, 26(11): 20–24.
 - (李波,朱国明,陶功明,等.高铁用 U75V 钢轨钢动态 CCT 曲线 [J].钢铁研究学报,2014,26(11):20-24.)
- [10] Wu Yiqiang, Geng Hengliang, Liao Yangbiao, *et al*. Optimization and practice of high speed railway heavy rail steel refining technology [J] Railway Technical Innovation, 2016(2): 40–43.
 - (吴义强, 耿恒亮, 廖杨标, 等. 高速铁路重轨钢精炼工艺优化和实践[J]. 铁路技术创新, 2016(2): 40-43.)
- [11] Bai Guojun, Bai Chunying, Wang Ying. Technical study on quality control of continuous casting billets for high-speed heavy rail steels [J]. Science & Technology of Baotou Steel, 2015, 41(2): 20-23.
 - (白国君,白春英,王莹,高速重轨钢连铸坯质量控制技术研究[J].包头科技,2015,41(2):20-23.)
- [12] Wang Yuchang, Zhang Jiaquan. Key technologies of cleanliness and homogeneity control for high-speed heavy rail steel [J]. China Metallurgy, 2015, 25(4):7-11.
 - (王玉昌,张家泉.高速重轨钢洁净度与均质性控制关键技术研究[J].中国冶金,2015,25(4):7-11.)
- [13] Su Hao, Chen Lin, Guo Feixiang , et al. Fatigue life analysis of U75V heavy rail steel [J]. Journal of Inner Mongolia University of Science and Technology, 2017, 36(4): 347–350.
 - (宿皓,陈林,郭飞翔,等.U75V 重轨钢的疲劳寿命分析[J].内蒙古科技大学学报,2017,36(4):347-350.)
- [14] Zhu Jun, Yang Jichun. Optimization of dynamic soft pressing process for continuous casting heavy rail [J]. Journal of Inner Mongolia University of Science and Technology, 2017, 36(4): 342–346.
 - (朱君,杨吉春.包钢5**铸机重轨钢连铸动态轻压下工艺优化研究[J].内蒙古科技大学学报,2017,36(4):342-346.)
- [15] Chen Lin, Chang Guo, Wei Ran, et al. Stress influence on pearlite transition phase transformation plasticity of U75V heavy rail steel [J]. Journal of Plasticity Engineering, 2014, 21(5): 105–110.
 - (陈林,常国,魏然,等,应力对 U75V 重轨钢珠光体转变的相变塑性影响 [J].塑性工程学报,2014,21(5):105-110.)
- [16] Cao Yi, Wang Shaodong, Wu Di, et al. Microstructure and mechanical properties of HSLA wear-resistant steel NM400 [J]. Journal of Northeastern University(Natural Science) 2011,32(2):241-244.
 - (曹艺,王昭东,吴迪,等.NM400高强度低合金耐磨钢的组织与性能[J].东北大学学报(自然科学版),2011,32(2):241-244.)
- [17] Yang Caifu, Zhang Yongquan. Applications of V-N microalloying technology in HSLA steels [J]. Iron and Steel, 2002, 37(11): 42-47. (杨才福,张永权. 钒氮微合金化技术在 HSLA 钢中的应用 [J]. 钢铁, 2002, 37(11): 42-47.)
- [18] Liu Qingchun, Zhong Hua, Zheng Zhiwang. Effect of vanadium on the microstructure and properties of YQ450NQR1 higher strength weathering steels [J]. Iron Steel Vanadium Titanium, 2008, 29(4): 32-36.
 - (刘庆春,钟华,郑之旺.钒对 YQ450NQR1 高强度耐候钢组织与性能的影响[J].钢铁钒钛,2008,29(4):32-36.)